Does Size Matter? The Real Effects of Subsidizing Small Firms*

Matthew Denes
Ran Duchin
John Hackney

July 2021

Abstract

We employ a new empirical approach to estimate the economic effects of access to small business subsidies in the United States. The analyses focus on changes in industry size standards, which determine small firms’ eligibility for government subsidies, and exploit randomness in the timing of size standard changes across industries surrounding the Small Business Jobs Act of 2010. We find that industry size standards have increased considerably over the past decade, leading to the crowding out of the smallest firms, as reflected by lower shares of small businesses in employment and payroll. Consequently, overall employment growth decreases, wages drop, and displaced workers become unemployed. These effects are amplified in areas reliant on small firms. We examine two programs using size standards as examples of the effects of increases during normal times and crises. Using procurement contracts, we show that government subsidies are reallocated to firms newly classified as small. We also find that larger firms received a greater share of loans during the first round of the Paycheck Protection Program in 2020.

JEL Classification: E24, G38, H25, H57, L25

Keywords: government subsidies, small firms, employment, procurement

* Contact: Matthew Denes, Tepper School of Business, Carnegie Mellon University, e-mail: denesm@andrew.cmu.edu; Ran Duchin, Carroll School of Management, Boston College, e-mail: duchinr@bc.edu; John Hackney, Darla Moore School of Business, University of South Carolina, e-mail: john.hackney@moore.sc.edu.
We thank Casey Dougal, Sabrina Howell, and Kieu-Trang Nguyen (conference discussants) and seminar participants at the University of South Carolina, Indiana University, University of Alberta, University of International Business and Economics (UIBE) Conference, RCFS/RAPS Winter Conference, the 2020 Joint Finance Seminar, the 2020 International Conference of Taiwan Finance Association, Carnegie Mellon University, Junior Entrepreneurial Finance/Innovation Lunch Group, Virtual Finance Seminar, American University, 2021 Midwest Finance Association Conference, 2021 Mid-Atlantic Conference in Finance, and the 2021 Western Finance Association Conference.
1. Introduction

A common perception is that government policies towards small firms play an important role in economic growth and job creation. This perception is popular among politicians of different political persuasions, small business advocates, and the business press.\(^1\) The rationale behind this perception is twofold. First, small firms contribute significantly to economic activity and aggregate employment, creating 1.6 million net jobs and employing more than 60 million people, or roughly 47% of the private workforce, in 2019 alone.\(^2\) Not surprisingly, the question of the importance of small firms has also attracted considerable attention from academic researchers (e.g., Hurst and Pugsley, 2011; Neumark, Wall, and Zhang, 2011; Haltiwanger, Jarmin, and Miranda, 2013). Second, absent policy interventions, small firms could receive suboptimal allocation of resources. This might occur if, for example, technological spillovers are not internalized by entrepreneurs (Jones and Williams, 1998) or financial constraints prevent optimal capital allocation (Evans and Jovanovic, 1989).

In this paper, we provide novel causal estimates of the economic effects of access to a wide range of small business subsidies in the United States. We focus on a recent set of policy changes that expanded firms’ eligibility for small business subsidies by increasing small business size standards. The Small Business Administration (SBA) determines small business size standards in each six-digit NAICS industry based on a firm’s average annual revenue or number of employees. These standards represent the maximum size to be classified as a small business and qualify for subsidies such as procurement contracts, grants, and loans for small firms.\(^3\)

\(^1\) As a recent example, see: “Where Trump and Biden Stand on Helping Small Businesses,” available at: https://www.wsj.com/articles/where-trump-and-biden-stand-on-helping-small-businesses-11602667801.

\(^3\) Appendix Table 3 lists federal programs and legislation based on size standards, in addition to U.S. states using the federal definition of small businesses. Figure 2 provides a map of U.S. states, where the shading represents the number of laws and regulations using U.S. federal size standards.
A key empirical challenge is that government policies are nonrandom and can be the consequence, rather than the source, of economic developments. To address this challenge, we exploit random variation in the timing of size standard increases across industries around the Small Business Jobs Act of 2010. The Act requires the SBA to review the size standards of all industries every five years. Based on regulatory filings and discussions with program administrators, the timing of size standard reviews was not driven by economic fundamentals. For example, the SBA arbitrarily reviewed all revenue-based size standards before turning to employee-based size standards. Furthermore, for administrative ease, the SBA simultaneously reviewed all six-digit NAICS industries within a two-digit NAICS sector. Accordingly, we find that industry characteristics do not predict the ordering of the reviews, and that the timing of the reviews is uncorrelated with the likelihood of a size standard increase in an industry. The empirical design focuses only on industries with size standard increases, and compares industries whose size standards increase to industries whose size standards will eventually increase. As such, this approach holds constant the change in an industry’s small business size standard to identify its treatment effect through variation in the timing of its implementation.

Using this identification approach, we investigate the effects of changes in size standards on industry composition and real economic activity by answering three research questions. First, how do size standard changes affect the share of employment and payroll for the smallest firms in an industry? Second, what are the implications for business dynamism, employment, and wages across industries and local economies that vary in their reliance on small businesses? Third, how do the policy changes in small business size standards impact the allocation of subsidies for specific programs such as government procurement contracts and the Paycheck Protection Program?

4 Section 2.3 provides additional details about the institutional features of size standard changes following the Act.
We hand-collect data on small business size standards around the 2010 Small Business Jobs Act and find that they have increased in 527 industries and decreased in only three industries. Of the 527 size standard increases, 263 were revenue-based (exceeding the rate of inflation) and 264 were employee-based. The average size standard has increased by nearly 122% based on firm revenue and by about 38% based on the number of employees. This trend implies that considerably larger firms have become eligible for small firm subsidies over the past decade.

In the first set of analyses, we investigate whether increases in small business size standards impact industry composition by crowding out the smallest firms. We focus our attention on the smallest firms in an industry to mitigate the confounding effects of potential size manipulation by firms close to the size standard threshold. Using data from the Census Statistics on U.S. Businesses (SUSB), we find that following an increase in eligibility for small firm subsidies, the ratio of the number of employees at the smallest firms to total industry employment drops by 0.5 percentage points, compared to industries whose size standards will increase following a future review. Similarly, the share of small business payroll to total industry payroll shrinks by 0.8 percentage points when size standards increase. These estimates are highly statistically significant and represent a large drop of 3.3% to 5.8% relative to the sample means.

We show that the changes in industry composition do not precede size standard changes, consistent with the parallel trends assumption. Further, the effects begin in the year following size standard increases and are persistent. Collectively, the estimates provide new causal evidence that changes in the government’s classification of small businesses, which affect access to small business subsidies, have a material effect on industry composition. The estimates suggest that classifying a growing number of larger firms as small businesses crowds out the smallest firms.

5 Our analyses focus on firms with fewer than 20 employees. We find similar results using alternative thresholds.
The real economic effects of crowding out small firms are theoretically unclear. On the one hand, large firms are a cornerstone of the modern economy, dating to the onset of the industrial revolution. The concept of economies of scale was proposed by Adam Smith (1776) and subsequently echoed by notable economists such as Galbraith (1957), who argued for the importance of large size and monopoly power. On the other hand, others, such as Schumacher (1973), argued strongly that “small is beautiful.” In his classic works, Schumpeter (1912, 1942) maintains that the relative roles of small and large firms in technological change and production vary considerably over the business cycle. His theory argues that economic development is a continuous process of innovation and creative destruction, in which entrepreneurs and small businesses play a crucial role.

We evaluate these opposing views by studying the effects of expanding eligibility for small firm subsidies on the forces of creative destruction within an industry. Recent research suggests that business dynamism, which captures the process of firm birth, expansion, contraction, and death, has been declining in the U.S. since 2000 (Decker et. al, 2014; Decker et. al, 2020). Using data from the Census SUSB, we find that increases in size standards lead to fewer expansions and more contractions of relatively smaller firms. Following size standard increases, small business expansions significantly decline by 4.4% and contractions substantially increase by 3.9%, both relative to the sample mean. Overall, the ratio of establishment births and expansions to establishment contractions and deaths, which we term dynamism, decreases by 5.1% compared to the sample average. Moreover, we find that the effects of size standard increases are industry-wide and not limited to small firms. Industry expansions decline by 6.1% and contractions increase by 6.7% compared to the sample mean, leading to considerable declines in industry dynamism.6 These outcomes are available at the four-digit NAICS level. The magnitudes are estimated based on half of the industries within a four-digit NAICS code experiencing a size standard increase.

6 These outcomes are available at the four-digit NAICS level. The magnitudes are estimated based on half of the industries within a four-digit NAICS code experiencing a size standard increase.
indicates that the reduction in activity of the smallest firms spills over within an industry. Together, the findings suggest that crowding out small firms hampers the forces of creative destruction, consistent with recent studies highlighting the decrease in U.S. business dynamism.

We next investigate the impact of size standard changes on labor markets. We find that size standard increases lead to a decline of 1.5 percentage points in employment growth and 1.2 percentage points in payroll growth. These estimates, however, can reflect the reallocation of labor to other industries rather than an adverse effect on employment and earnings. To investigate this possibility, we exploit detailed data on job-to-job flows and earnings across industries provided by the Census Longitudinal Employer-Household Dynamics (LEHD) program. We find that job losses following size standard increases lead to unemployment, rather than reallocation of labor to other sectors of the economy. These estimates are similar for stable job losses, highlighting that the effects are not driven by adjustments to the temporary workforce. We also examine changes in the wages of employees in industries with size standard increases. We show that wages for both current and new employees significantly decline after size standards increase. Taken together, these results highlight the adverse effects of crowding out small firms on labor markets.

We extend the analyses by studying regional employment effects. These analyses are motivated by Martin, Nataraj, and Harrison (2017), who find that Indian districts more exposed to subsidy reductions for small firms experienced higher employment and output growth. They are also related to studies on agglomeration economies that highlight the synergistic benefits of co-location for productivity, investment, and employment growth (e.g., Greenstone, Hornbeck and Moretti, 2010; Dougal, Parsons and Titman, 2015) and the role of small firms in local economies (Delgado, Porter, and Stern, 2010; Glaeser, Kerr, and Kerr, 2015). In these analyses, we exploit the variation in small business concentration across Metropolitan Statistical Areas (MSAs) to
investigate the effect of changes in small business size standards on MSA employment. We find that a one standard deviation increase in an MSA’s exposure to size standard changes leads to a 0.9 percentage point increase in unemployment.

In the last set of analyses, we study the role of size standards in the allocation of government subsidies during normal times and crises. We provide two micro-level examples of the effects of the increases in small business size standards on access to government subsidies. First, we examine the implications of the increases in small business size standards for government procurement contracts. We use contract-level data to investigate the allocation of government contracts to small firms. The estimates indicate that an average of 20.1% of contract volume is set aside for eligible small firms, representing an average annual amount of $91.7 billion. We find that after an industry’s size standard increases, the percent of small business contracts flowing to firms that were previously classified as small businesses declines by 5.6 percentage points. Conversely, the percent of such contracts flowing to firms that become newly classified as small increases by 1.4 percentage points. Overall, we find that the total amount allocated to small firms does not change, providing direct evidence that following size standard increases, government subsidies shift to newly eligible, larger firms at the expense of smaller firms.

Second, we examine the provision of loans under the Paycheck Protection Program (PPP), which was established by the Coronavirus Aid, Relief, and Economic Security (CARES) Act in March 2020. The program’s goal was to support employment at small firms through forgivable loans that were originated by financial institutions and guaranteed by the government (e.g., Chetty et al., 2020; Granja et al., 2020). Firms were eligible for PPP loans based on their industry’s small business size standard or those with fewer than 500 employees. We compare the allocation of PPP loans to the smallest firms across industries with size standards above versus below the 500-
employee cutoff.7 We find that the share of PPP loans allocated to the smallest firms is 3.9 percentage points lower in industries above the 500-employee cutoff relative to industries with employee-based size standards below this cutoff. This effect continues to hold after controlling for the share of small establishments in an industry, and when we consider industries with large revenue-based size standards as the control group. We also find that the effect is amplified in industries whose size standard increased following the Small Business Jobs Act of 2010. We also show that the total amount of PPP loans is unrelated to the 500-employee cutoff, suggesting that in industries with higher size standards, large firms obtain PPP loans at the expense of smaller firms. Together, the results on procurement contracts and the PPP provide suggestive evidence that size standards impact access to subsidies for the smallest firms in both normal times and crises.

This paper contributes to a growing body of research on the economic effects of government policies targeting small firms, often with the goal of stimulating economic growth and innovation (Bloom, Van Reenen, and Williams, 2019). Most studies focus on the effects of a specific program or policy. Previous work examines tax credits for R&D (Dechezleprêtre et al., 2020), for investment (Zwick and Mahon, 2017), and for investors (Denes et. al, 2020). There is also evidence on the positive effects of R&D grants (Howell, 2017), investment subsidies on local economic activity (Criscuolo et al., 2019), and accelerators (González-Uribe and Leatherbee, 2018). Recent papers examine changes in eligibility for small firm subsidies in India (Banerjee and Duflo, 2014; García-Santana and Pijoan-Mas, 2014; Martin, Nataraj, and Harrison, 2017; Rotemberg, 2019). We add to this literature by studying the causal effects of eligibility for an extensive set of subsidies targeting small firms in the United States – an economy with developed capital markets and legal systems less susceptible to frictions.

7 Consistent with our previous analyses, we focus on firms using PPP loans to support fewer than 20 employees.
2. Subsidizing Small Firms in the United States

2.1. Firm Eligibility for Federal Subsidies

In 1953, the United States Congress passed the Small Business Act to “aid, counsel, assist, and protect, insofar as is possible, the interests of small business concerns in order to preserve free competitive enterprise.” This Act led to the creation of the Small Business Administration (SBA). Among its responsibilities, the SBA sets the definitions of small businesses, which are referred to as size standards. These size standards determine which firms are eligible to access numerous federal subsidies for small businesses and also used by many U.S. states. Panel A of Appendix Table A.2 presents an extensive list of federal programs and legislation that use the size standards to determine eligibility. Panel B lists U.S. states with laws or regulations relying on the federal definition of a small business and Figure 2 provides a corresponding map of U.S. states, where the shading represents the number of state laws and regulations using federal size standards.

Size standards for small businesses are primarily based on a firm’s annual receipts (revenue) or number of employees. The SBA sets the standards using six-digit North American Industry Classification System (NAICS) codes, and standards vary substantially across industries. Revenue size standards mostly apply to goods-based firms, whereas employee size standards apply to service-based firms. The size of a business includes all its subsidiaries and affiliates.

The determination of size standards plays a critical role in the allocation of government subsidies to small firms during normal times and crises. For example, the federal government aims to set aside 23% of federal procurement contracts for small businesses. Accordingly, we find that 17.3% to 22.6% of contracts in a particular year flow to firms designated as small during our

8 The amount of annual receipts is the three-year average of total income plus costs of goods sold. The number of employees is calculated as the average number of people employed, including full- and part-time workers, over the most recent 12 calendar months.

9 See https://www.sba.gov/federal-contracting/contracting-assistance-programs for additional details.
sample period. This represents a substantial proportion of government spending and accounts for an annual average of $91.7 billion in our sample of contracts. Size standards also affect eligibility for federal programs during crises. During the COVID-19 pandemic, the Paycheck Protection Program dispersed $526 million in 2020 through about 5.1 forgivable loans. Part of the eligibility criteria for this program included size standards.10

In 2010, the United States Congress passed the Small Business Jobs Act, which requires the SBA to conduct a review of no less than one-third of all industry small business size standards every 18 months, with a review of all standards to be completed at least once every five years. Prior to this requirement, the SBA reviewed size standards on an ad hoc basis and occasionally adjusted those based on firm revenue for inflation.11 To facilitate the mandatory review due to the Act, the SBA released a schedule of reviews by two-digit NAICS sectors in advance.12 The purpose of the predetermined review schedule was to divide the roughly 1,000 industries into manageable sections for potential size standard changes, while examining sectors in their entirety. Importantly, industries (based on six-digit NAICS codes) would only be eligible for a size standard change if their two-digit NAICS sector was under review.13

We hand-collect data on small business size standards from the Code of Federal Regulations (CFR). Size standards are recorded as of January 1 of each year and correspond to industries defined at the six-digit level of the NAICS codes. The data include size standards for

10 Firms with fewer than 500 employees also qualified for forgivable loans through the Paycheck Protection Program.
11 Digler (2020) provides a history of size standards in the U.S.
13 Two-digit NAICS sectors include between 25 and 360 six-digit NAICS industries.
1,180 industries from 2002 to 2017, of which 491 industries have size standards based on revenue and 692 industries have size standards based on the number of employees.\footnote{We drop industries with size standards based on assets or various types of output, such as megawatt hours or barrels of petroleum. Also, three industries switch from revenue to employee size standards from 2002 to 2017.}

Table 1 describes the changes in size standards surrounding the Small Business Jobs Act of 2010. Since the SBA periodically adjusted revenue standards for inflation, we restrict attention to changes of at least 25%. To focus on the effects of the legislation, we drop industries with size standard changes that exceeded the 25% threshold prior to the Act. Following the Act, there have been 527 size standard increases.\footnote{The SBA finalized Sectors 44, 45, 72, and 81 shortly after the Small Business Jobs Act passed on September 23, 2010. We obtain similar results if we omit these sectors from the analyses.} The SBA is considerably less likely to decrease size standards and there have been only three such cases during the sample period. Figure 1 highlights the substantial increase in revenue and employee size standards following the Act. Revenue size standards nearly doubled from an average of $10.3 million in 2009 to $19.5 million in 2017. The average employee standard rose from 554 employees in 2009 to 770 employees in 2017.

2.3. Empirical Design

We use quasi-random variation in the timing of size standard reviews to identify the real effects of small business subsidies. Following the passage of the Small Business Jobs Act of 2010, the SBA determined the order for reviewing all size standards. Several key features of this review process indicate that the order is not related to economic fundamentals. First, the SBA predetermined the complete review schedule at the beginning of the review process. Second, the SBA arbitrarily reviewed all revenue-based size standards before reviewing employee-based size standards. Third, the SBA based the schedule on two-digit NAICS sectors for administrative ease, while size...
standards are set by six-digit NAICS codes.16 We confirm each of these features with program administrators at the SBA.

We provide empirical analyses that are consistent with the institutional details of the reviews. First, we examine whether industry characteristics predict the announcement, proposal, or finalization dates of size standard reviews. We collect these dates from the CFR. We define \textit{Date announced} as the order of industry reviews based on the date when the review process is announced. We define \textit{Date proposed} and \textit{Date finalized} analogously with respect to the dates when the SBA announces its recommendation and finalizes it, respectively.

We present these results in Panel A of Table 2. The sample includes industries with size standard increases and uses industry growth rates from 2007 to 2009.17 Column 1 shows that the ordering of review announcements across sectors is not predicted by employment growth, payroll growth, or establishment growth preceding the size standard changes. Columns 2 and 3 present similar results for the proposal and finalization dates, respectively. These findings provide evidence that the timing of reviews is unrelated to industry fundamentals.18

Next, we empirically investigate if the order of the reviews is related to the likelihood of a size standard increase. The sample includes all industries at the six-digit NAICS code that the SBA reviews surrounding the Small Business Jobs Act of 2010. In Panel B of Table 2, column 1 shows that the likelihood of a size standard increase is not associated with the ordering of review announcements across sectors. The coefficient estimate is statistically insignificant, economically

17 There are slightly fewer observations than the full sample of size standard increases due to data availability.

18 We obtain similar results if we use growth rates from 2004 to 2009.
negligible, and the regression R-squared is virtually zero. Columns 2 and 3 provide similar results for the proposal and finalization dates, respectively. Collectively, these findings show that the timing of the reviews is unrelated to their outcomes – there is no correlation between the review schedule and the likelihood of a size standard increase. As such, they suggest that the timing of the reviews is unrelated to the underlying economic factors that determine the SBA’s decision to increase an industry’s size standard.

To estimate the causal effects of size standard increases, the empirical analyses focus only on industries whose size standards increase surrounding the Small Business Jobs Act of 2010. This approach holds constant the change in an industry’s small business size standard and identifies the treatment effect using variation in the timing of its implementation. We limit the sample to industries with size standard increases to alleviate concerns that the effects are driven by unobservable industry characteristics or trends correlated with the size standard changes.19

We implement the identification strategy using the following difference-in-differences specification:

\[Y_{jt} = \alpha_j + \alpha_t + \beta \cdot Size\ increase_{j,t-1} + \epsilon_{jt}, \]

where \(Y_{jt} \) is the outcome variable of interest for industry \(j \) in year \(t \). \(Size\ increase_{j,t-1} \) is an indicator variable that equals one when the size standard in industry \(j \) increases and zero prior to the increase. We lag this variable by one year since the CFR records size standards as of January 1 of each year, and, consequently, we observe size standards with a delay of up to one year. Industries in the baseline specifications are defined using the six-digit level of NAICS codes. Depending on data availability, we estimate several subsequent analyses at the four- or two-digit NAICS levels. In these cases, we estimate the effects of size standard increases based on the

19 We note, however, that we find similar results if we also include industries with no size standard changes.
proportion of six-digit industries with size standard increases. We include industry fixed effects to capture time-invariant industry heterogeneity and year fixed effects to absorb economywide time trends. The standard errors are clustered at the industry level. We provide additional variable definitions in Table A.1. The coefficient of interest is \(\beta \), which estimates the marginal effect of an increase in eligibility for small firm subsidies.

3. Data

We use data from several sources to study the real effects of changes in access to small firm subsidies. The sample period is from 2002 to 2017 to provide a symmetric time window around the 2010 Small Business Jobs Act in the difference-in-differences analyses.

We collect data on industry-level establishments and employment from the Statistics of U.S. Businesses (SUSB), provided by the Census Bureau. This dataset details establishments and employment by firm size and industry at the six-digit level of NAICS codes.\(^{20}\) The SUSB is a comprehensive summary of the economy and covers all U.S. establishments with paid employees (Hurst and Pugsley, 2011). We also construct measures of creative destruction, which we refer to as business dynamism, using the SUSB employment data.

We study job flows and earnings using data available from the Longitudinal Employer-Household Dynamics (LEHD) program at the Census Bureau (Davis, Faberman, and Haltiwanger, 2006). The LEHD’s Job-to-Job Flows (J2J) data allow us to examine labor reallocation by tracing job losses to other industries or to unemployment. The LEHD’s Quarterly Workforce Indicators

\(^{20}\) The SUSB uses noise infusion to protect the confidentiality of respondent data and accompanies each cell value with an associated noise flag. We drop cells with a “high noise” flag from the analyses.
(QWI) data provide detailed information on worker earnings. We use these data to evaluate the labor market effects arising from increases in eligibility for small firm subsidies.

We augment the industry-level data with unemployment data at the Metropolitan Statistical Area (MSA) level provided by the Bureau of Labor Statistics (BLS). We match the unemployment data to the County Business Patterns database from the Census Bureau, which details the breakdown of establishments by firm size and MSA. We use these data to measure regional exposures to changes in size standards. We also collect data on the following control variables for our regional analyses: MSA population from the American Community Survey provided by the Census Bureau, MSA house price growth from the Federal Housing Finance Agency, and MSA GDP growth from the Bureau of Economic Analysis (BEA).

We examine the effects of size standard increases on federal subsidy programs using detailed data on procurement contracts and forgivable loans from the Paycheck Protection Program. We collect data on procurement contracts of the U.S. federal government from the USAspending.gov website, which includes detailed contractual data on contract awards, terms and subsequent changes. Brogaard, Denes, and Duchin (2020) provide additional information about these data. We study the subsidies during crises using data provided by the SBA on the Paycheck Protection Program. These data include every loan supported through this program in 2020.

Table 3 provides summary statistics for the main variables in the analyses. Size standards increase for nearly 21% of the industry-year observations. The average share of small firms in an industry is just over 15% based on employment, and 13.7% based on payroll. The average annual percentages of establishment expansions and contractions are 13.6% and 12.7%, respectively. The average MSA unemployment rate is 6.4%. Table A.1 provides details on all variable definitions.
4. Results

4.1. The Crowding Out of Small Firms

We begin by studying the impact of increases in small business size standards on the composition of firms within an industry. Size standards determine the eligibility for various federal subsidies in the United States, including procurement contracts and guaranteed loans. Since larger firms can claim government subsidies when size standards increase, subsidies may be redirected away from relatively smaller firms, reducing their representation across industries.

Using data from the Census SUSB, we construct two measures of the share of small firms in an industry. *Small employee ratio* is the total number of employees working at firms with fewer than 20 employees divided by the total number of employees in a given industry each year. Similarly, *Small payroll ratio* is the total payroll for firms with fewer than 20 employees divided by the total payroll in an industry each year. We define small firms in this way because the SUSB defines firm size based on the number of employees. We focus on firms with fewer than 20 employees to study the effects of size standard increases on the smallest firms in each industry and to mitigate the confounding effects of potential size manipulation by firms close to the size standard threshold. However, we also examine alternative size thresholds for small firms.

We investigate the crowding out of small firms using the difference-in-differences specification in equation (1). The empirical design compares compositional changes in industries with size standard increases to changes in industries that will eventually experience a size standard increase, but are not yet up for review.

In Table 4, Panel A reports the estimates of the effects of size standard increases on the share of small firms. The key variable of interest is the indicator variable *Size increase*, which equals one after an industry size standard increase, and zero otherwise. In column 1, we find that
the proportion of small firms in industry employment drops by 0.9 percentage points following an increase in industry size standards, holding constant time-invariant unobserved industry heterogeneity. The effect is statistically significant at the 1% level and represents a decline of 5.9% relative to the sample mean. In column 2, we augment the regression model with year fixed effects and find that the proportion of small firms in industry employment drops by 0.5 percentage points, corresponding to a decrease of 3.3% relative to the sample mean. This estimate is statistically significant at the 5% level.

Columns 3 and 4 provide analogous estimates for the share of small businesses in total industry payroll. We find that the ratio of small business payroll to total industry payroll drops by 0.8 to 1.4 percentage points following an increase in eligibility for small firm subsidies. These estimates represent a sizeable decline of 5.8% to 10.2% relative to the sample mean, and are statistically significant at the 1%.21

Panel B of Table 4 shows that the baseline estimates hold across different small business size thresholds. Since the SUSB only provides aggregate establishment and employment data across size bins, we cannot estimate firm-level regressions. Instead, we can evaluate the robustness of our findings by varying the threshold for small firms in an industry. In the analyses of Small employment ratio, column 1 shows that the estimates do not change when we use a cutoff of 100 employees to define small firms. Column 2 shows that the effects are similar when we use a cutoff of 500 employees. In columns 3 and 4, we re-estimate the specifications for Small payroll ratio with the 100- and 500-employee thresholds, respectively, and find that the effects remain negative and highly statistically significant. These estimates provide additional evidence that increases in eligibility for small business subsidies crowd out small firms.

21 In Appendix Table A.4, we find economically and statistically similar results using the proportion of small establishments (columns 1 and 2) and of small firms (columns 3 and 4).
We conduct further robustness tests in Panel C of Table 4 related to the staggered difference-in-difference empirical design. First, a concern might be that, since we focus on industries whose size standards increase surrounding the Small Business Jobs Act of 2010, there is no effective control group for the last treatment group (Baker, Larcker, and Wang (2021)). In columns 1 and 2, we omit the last set of size standard increases and find that the estimates are quite similar to the baseline results in columns 2 and 4, respectively, in Panel A of Table 4.22

Another possible concern is that the timing of the reviews is correlated with confounding economic factors. Manufacturing industries primarily use employee-based size standards and might differ from industries using revenue-based size standards. We address this concern by focusing on sectors with both employee-based and revenue-based size standards and also exclude manufacturing sectors.23 Columns 3 and 4 show that effect of a size standards increase on the share of both small business employment and payroll remains economically large and statistically significant. In columns 5 and 6, we omit the last treatment period, in addition to applying the sample restriction above, and continue to find similar estimates.

We investigate the dynamic treatment effects in Figure 3. We estimate dynamic regression specifications in a four-year window around the increase in industry size standards by including interaction terms for each year in this window. The year of the size standard increase is defined as the base year. This panel reveals two important results. First, economically large changes in the ratio of small business employment or payroll in an industry do not precede size standard increases. Further, the coefficient estimate before the size standards increase has the opposite (positive) sign.

22 A related and growing literature highlights that there could be heterogeneous treatment effects (de Chaisemartin and d’Haultfoeuille (2020)). Over 90\% of weights are positive in our sample and, when omit the last treatment group, there are no negative weights.

23 Each sector is exposed to the same economic factors yet are reviewed for size standard changes are different times. This sample includes sectors 21, 22, 48, 51, and 54. We exclude the retail trade because this sector includes separate size standards for various federal programs.
Since the year of the increase is excluded, a positive coefficient indicates that the ratio of small employment or payroll is already high before size standards are reviewed and suggests a decrease in size standards for these industries. Second, both small business ratios decrease immediately following the size standard change, and the effects persist following the change. These findings are consistent with the parallel trends assumption for the identification strategy and mitigate concerns about reverse causality, a scenario where changes in the composition of firms in an industry lead to changes in its small business size standard.

Taken together, these results provide novel evidence on the causal effects of increasing the eligibility for small firm subsidies. Following the expansion of size limits, larger firms become eligible for subsidies previously reserved for smaller firms. Consistent with crowding out small firms, we show that the industry representation of smaller firms declines following increases in industry size standards. These results add to the findings in Rotemberg (2019) that firms newly eligible for small firm subsidies crowd out their competitors in domestic product markets. Given recent work examining the importance of small firms (Hurst and Pugsley, 2011; Neumark, Wall, and Zhang, 2011; Haltiwanger, Jarmin, and Miranda, 2013), we turn next to the real effects of crowding out small firms.

4.2. Creative Destruction

The real economic consequences of the crowding out of small firms are theoretically unclear. The role that small firms play in technological change and economic growth has been a subject of debate among economists for many years. On the one hand, large firms have been viewed as vital to the modern economy, echoed in the concepts of economies of scale and monopoly power (Adam Smith, 1776; Galbraith, 1957). On the other hand, others contend that small firms importantly
differ from large firms and are crucial for economic growth. Schumpeter (1912, 1942) highlighted that innovative activity and creative destruction are driven by small firms and Schumacher (1973) coined that “small is beautiful.”

To estimate the impact of size standard increases on creative destruction within an industry, we estimate difference-in-differences regressions akin to equation (1). Importantly, in these analyses, we define industries at the four-digit NAICS code based on the most granular data available from the SUSB. We define \textit{Size increase proportion} as the proportion of size standard increases within an industry-year. Table A.1 provides additional details on variable definitions.

Using the employment change data from the Census SUSB data, we form measures of creative destruction. \textit{Expansions} is defined as the number of establishments that increase employment relative to the total number of establishments in the previous year. Similarly, \textit{Contractions} is defined as the number of establishments that decrease employment relative to the lagged total number of establishments. We also construct a more general measure, \textit{Dynamism}, which is defined as the number of establishment births and expansions over the number of contractions and deaths. Table 2 shows that the average expansion rate of small firms is 13.6% and the average rate of small firm contractions is 12.7%.

Table 5 provides the results. In Panel A, we report the estimates for measures of creative destruction at small firms. Column 1 shows that the proportion of small firm expansions significantly declines. To shed light on the economic magnitude of the effect, if size standards increase for half of the industries in a four-digit NAICS grouping, the average expansion rate for small firms drops by 4.4% relative to the sample mean. The estimates in column 2 suggest that contraction rates increase by 3.9% compared to the sample mean for a similar increase in \textit{Size}

\footnote{We follow a similar identification strategy and limit the sample to four-digit NAICS codes in which at least one six-digit industry experienced a size standard increase during the sample period.}
increase proportion. Lastly, in column 3, we find that small firm Dynamism falls by 5.1% relative to the sample average. All the estimates are statistically significant at the 1% level. These findings suggest that relaxing the eligibility requirements for small business subsidies impedes creative destruction at small firms.

Moreover, panel B provides industrywide results on the expansion, contraction, and dynamism rates of all the firms within an industry, not just the smallest firms. We find that increases in size standards significantly reduce the rate of expansions (column 1) and increase the rate of contractions (column 2) in an industry. When size standards increase for half of the industries in a four-digit NAICS industry, the expansion rate drops by 6.1% and the contraction rate jumps by 6.7%, both relative to the sample mean. Column 3 shows that Dynamism also declines at the industry level. These estimates are once again highly statistically significant at the 1% level. These results indicate that the decrease in creative destruction spills over from the smallest firms to the rest of the firms in the industry, consistent with the documented decline in business dynamism in the U.S. in recent years (Decker et. al, 2014; Decker et. al, 2020). Our findings suggest that subsidizing small firms has nontrivial effects on the forces of creative destruction. Expanding the set of firms eligible for small business subsidies produces unintended consequences for business dynamism.

4.3. Employment, Labor Reallocation, and Wages

In this subsection, we investigate the effects of increases in size standards on labor markets. To evaluate these effects, we use data from the Census SUSB. We construct two variables to measure industry-level labor market activity. The first variable, Employment, is defined as the log change
in the total number of employees in an industry. The second variable, *Payroll*, is defined as the log change in total wages in an industry.

Table 6 provides regression estimates on the effect of size standard increases on industry *Employment* and *Payroll*. The estimates in column 1 show that employment growth declines by 1.5 percentage points after size standards increase. This estimate is statistically significant at the 1% level. In column 2, we find that payroll growth declines by 1.2 percentage points when size standards increase. These findings suggest that economic activity in labor markets slows down following the crowding out of small firms due to size standard increases. Accordingly, they are consistent with the Schumpeterian view of small firms.

Next, we examine the reallocation of labor following the decline in employment and payroll growth. We use data on job flows from the Census LEHD’s Job-to-Job Flows. We define *Aggregate job losses* as the number of separations into persistent unemployment and *Stable job losses* as the number of separations from a stable job into persistent unemployment. These data are available for two-digit NAICS codes. Accordingly, we calculate *Size increase proportion* as the proportion of size standard increases within a two-digit NAICS industry-year. For interpretability, the outcomes are standardized to have a mean of zero and a standard deviation of one. Table A.1 provides additional details on variable definitions.

Panel A of Table 7 reports the effect of size standard increases on industry job losses. Column 1 shows that size standard increases trigger aggregate job losses that lead to persistent unemployment. When the share of industries with a size standard increase is 50%, industrywide job losses rise by 0.3 standard deviations. Column 2 suggests that a similar increase in the proportion of size standard increases leads to a 0.2 standard deviation increase in stable jobs lost

25 Persistent unemployment is defined by the Census LEHD as no main job in two consecutive surveys.
26 In the sample, each two-digit NAICS sector has at least one six-digit NAICS industry with a size standard increase.
to unemployment. The estimates in columns 1 and 2 are statistically significant at the 5% level. Together, they suggest that job losses are not transient nor driven by adjustments to temporary workers; rather, size standard increases lead to a persistent decline in full-time jobs in an industry.

Lastly, we examine the impact of size standard increases on wages. For this analysis, we use data from the Census LEHD’s Quarterly Workforce Indicators. These data are available at the four-digit NAICS level by state. As before, we aggregate the data to the four-digit industry classification level. However, unlike the previous analyses, the unit of observation is an industry-state-year. Hence, we augment these specifications with state fixed effects to absorb time-invariant state heterogeneity. For interpretability, the outcomes are standardized to have a mean of zero and a standard deviation of one. Table A.1 contains additional details on variable definitions.

Panel B of Table 7 provides estimates of the effects of size standard increases on the earnings of current and new employees. Column 1 shows that earnings decline for an industry’s current employees when size standards increase. The estimates imply that when the share of industries with a size standard increase is 50%, the earnings of current employees decline by 0.03 standard deviations. Column 2 investigates the impact of standard increases on the earnings of new employees within an industry. The estimates suggest that a similar increase in the proportion of industries with a size standard increase leads to a decline of 0.02 standard deviations in the earnings of new employees. While the effects of size standard increases on earnings are statistically significant at conventional levels, they are economically small, possibly due to downward rigidities in nominal wages.\(^{27}\)

Overall, the results in this subsection suggest that size standard increases lead to a contraction in labor markets. Displaced employees do not find new jobs immediately, and the

\(^{27}\) See Elsby and Solon (2019) for a survey of the literature on downward rigidity in nominal wages.
earnings of current and new employees decline. As such, the estimates indicate that the crowding out of smaller firms has potential nontrivial, negative consequences for labor market activity in the United States. These findings complement recent studies on the removal of preferential treatment for small firms in India, which find that it led to increases in profits, employment, and output (Banerjee and Duflo, 2014; García-Santana and Pijoan-Mas, 2014; Martin, Nataraj, and Harrison, 2017; Rotemberg, 2019). Our results indicate that the economic effects of small business subsidies can vary across developing and developed countries. The results are also related to research on the role of small firms in job creation (e.g., Birch, 1987; Davis, Haltiwanger, and Schuh, 1996; Neumark, Wall, and Zhang, 2011; Haltiwanger, Jarmin, and Miranda, 2013). They indicate that crowding out small firms reduces employment growth and wages, and increases job losses and unemployment.

4.4. Agglomeration

An extensive literature studies agglomeration economies, or the formation of geographic clusters of economic activity. This literature highlights the synergistic benefits from co-location (e.g., Glaeser and Gottlieb, 2009; Moretti, 2011) and local spillovers in productivity, investment, and employment growth (Greenstone, Hornbeck, and Moretti, 2010; Dougal, Parsons, and Titman, 2015; Glaeser, Kerr, and Kerr, 2015). Several studies, including Delgado, Porter, and Stern (2010) and Glaeser, Kerr, and Kerr (2015), also emphasize the role of small firms in agglomeration economies. Hence, in this subsection, we investigate the effects of size standard increases and the resulting crowding out of small firms on agglomeration economies. The empirical analyses exploit variation in the distribution of small firms and exposure to size standard increases across regions in the U.S.
We measure local labor market activity using *MSA unemployment rate*, defined as the annual unemployment rate in a Metropolitan Statistical Area (MSA). To account for local economic conditions, we include several control variables in the regression specifications: *MSA population* is the log of MSA-level population, *MSA house price growth* is the log change in MSA-level house prices, and *MSA GDP growth* is the log change of MSA GDP.

We measure regional exposure to changes in size standards using the number of industry establishments by firm size at the MSA level from the Census County Business Patterns data. First, we classify a business as small if it has fewer than 20 employees. Second, we calculate the within-industry proportion of local establishments classified as small in each MSA as of 2003, the starting year of the sample period.\(^{28}\) By calculating the concentration of small businesses in 2003, we mitigate concerns about the simultaneity of local small business concentration and changes in small business size standards. Third, we multiply this proportion by the corresponding industry’s size standard increase indicator in year \(t-1\). Finally, we sum the weighted industry size standard increases to the MSA level, and refer to this variable as *MSA exposure to size standard increases*. Intuitively, this measure assigns larger weights to MSAs that have a higher concentration of small firms operating in industries with size standard increases. Since the proportion of small businesses is measured as of 2003, and hence is time-invariant, the variation in *MSA exposure to size standard increases* over time arises from increases in small business size standards.

We estimate equation (1) at the MSA-year level and augment the specification with MSA and year fixed effects to control for time-invariant regional heterogeneity and aggregate macroeconomic trends. We report the results in Table 8. The estimates in column 1 show that local unemployment rises by 0.9 percentage points for a one standard deviation increase in an MSA’s

\(^{28}\) We start the sample period of these analyses in 2003, rather than 2002, due to significant changes in MSA definitions that occurred in 2003.
exposure to size standard changes. This estimate is statistically significant at the 1% level and economically large, representing a 14.7% increase relative to the sample mean. Next, we incorporate covariates for local economic activity to examine whether the estimate is driven by regional economic conditions. Column 2 contains lagged MSA population, column 3 adds lagged MSA house price growth, and column 4 includes lagged MSA GDP growth. The estimates remain highly statistically significant and largely unchanged, ranging from 0.8 to 1.0 percentage points for a one standard deviation increase in an MSA’s exposure to size standard increases. These findings suggest that increasing size standards not only depresses employment at the industry level, but also spills over to regions with greater concentrations of small firms. The large economic magnitudes of the regional effects imply that local spillovers from small firms play an important role in agglomeration economies and amplify the employment effects of size standard increases. These findings complement the findings in Martin, Nataraj, and Harrison (2017) that Indian districts more exposed to subsidy reductions for small firms experienced higher employment growth.

All in all, the results in section 4 provide causal evidence on the importance of subsidizing small firms in a large, developed economy. Relaxing the eligibility criteria crowds out small firms and leads to declines in business dynamism, in addition to decreases in industry and local employment. Lost jobs are followed by persistent unemployment, as well as lower wages for current and new workers in the affected industries.
5. Impact on Federal Subsidy Programs

Size standards determine firms’ eligibility for many small business federal subsidies in the United States. We focus on two large programs that target small firms: small business set-asides in federal procurement contracts and the Paycheck Protection Program.

5.1. Procurement Contracts

The United States federal government commonly purchases goods and services from the private sector. To support small firms, policymakers set a goal of allocating 23% of the federal procurement budget to small firms based on size standards. From 2002 to 2017, the federal government purchased $284 billion to $564 billion from contractors, with 17.3% to 22.6% flowing to small firms, as shown in Table A.3. Changes in small business size standards modify the set of firms that qualify for government procurement contracts as small businesses.

We use detailed data on procurement contracts to study the allocation of contracts across firms that were classified as small businesses before the eligibility expansion and firms that are newly classified as small businesses following the eligibility expansion. In this setting, we can estimate the analyses at the firm level because the contracts data uniquely identifies contracts for small businesses. As before, the analyses only include industries with a size standard increase. Furthermore, we focus on firms that received contracts before the size standards change. This allows us to examine the role of procurement contracts holding constant the set of firms receiving contracts. We define Percent of contracts to always small firms as the proportion of contracts awarded to firms classified as small before a size standard increase. Similarly, we define Percent of contracts to newly small firms as the proportion of contracts awarded to firms classified as small only after a size standard increase. Lastly, we measure the total amount of contracts awarded to
small firms (old and new) by constructing the variable *Contract amount to small firms*, which is defined as the log of one plus the total dollar amount of contracts awarded to firms classified as small.

Table 9 examines the flow of contracts to small firms following increases in size standards based on equation (1). In column 1, we find that the percent of contracts to firms that were previously classified as small declines by 5.6 percentage points. This estimate is statistically significant at the 1% level and represents a 13.9% drop relative to the sample mean. Next, we evaluate the allocation of contracts to firms that become small due to the increase in size standards. Column 2 shows that the percent of contracts flowing to newly classified small firms increases by 1.4 percentage points. This estimate is economically sizable and also statistically significant at the 1% level.

We note, however, that expanding the eligibility for small firm subsidies could increase the allocation of contracts to small firms. According to this scenario, increases in size standards do not necessarily lead to the crowding out of smaller firms in procurement contracts. To assess this possibility, we estimate the impact of size standard changes on the overall allocation of contracts to small firms in an industry. Column 3 shows that the overall dollar amount of contracts awarded to small firms does not change following size standard increases. This is evident by the statistically insignificant and economically small coefficient on *Contract amount to small firms*. This result suggests that newly eligible, larger firms receive more contracts at the expense of smaller firms.

Collectively, these analyses provide direct, micro-level evidence that procurement contracts are a channel through which increases in size standards crowd out small firms. Increases

29 This specification includes all firms designated as small, including first-time contractors who enter the sample after size standard increases. Accordingly, this sample differs from the sample of contractors in columns 1 and 2.
in size standards reduce the flow of contracts to firms classified as small prior to the size standard change, and increase the volume of contracts to newly qualifying firms. Overall, the total amount of contracts awarded to businesses designated as small does not change, suggesting that relatively smaller firms obtain a shrinking portion of procurement set-asides following size standard increases.

5.2. Paycheck Protection Program

The Paycheck Protection Program was created in 2020 to support employment at small firms during the COVID-19 pandemic. It was established through the Coronavirus Aid, Relief, and Economic Security (CARES) Act in March 2020, and extended with the Paycheck Protection Program Flexibility Act in the following month. The legislation appropriated $659 billion in government support. The program disbursed $526 billion in about 5.1 million loans in 2020. Firms were eligible for PPP loans primarily based on their industry’s size standard or those with fewer than 500 employees.

We obtain data on the Paycheck Protection Program from the SBA. We define *Share of loan amount to smallest firms* as the amount of PPP loans to firms with fewer than 20 jobs reported relative to the total amount of PPP loans to a particular industry. We also construct *Total loan amount* as the log of the amount of PPP loans to a particular industry. We focus on loans provided in the first round of the program in 2020 when demand for loans outstripped supply.30 Additionally, we restrict attention to those PPP loans where at least 75% of the loan is used for payroll to better proxy for firm size.31

30 The first round of the program in 2020 started on April 3 and ended on April 16. Denes, Lagaras, and Tsoutsoura (2021) find that firms receiving PPP loans later became financially distressed.

31 We obtain similar results using the full sample of PPP loans.
Table 10 reports the results on the Paycheck Protection Program. Column 1 focuses on industries with employee size standards and includes *Small establishment ratio*, which is the number of establishments with fewer than 20 employees relative to the total number of establishments in an industry. We find the share of PPP loans allocated to the smallest firms is 3.9 percentage points lower in industries with size standards above the 500-employee cutoff (*Size standards > 500 employees*). Column 2 adjusts the sample of industries to include industries with size standards above the 500-employee cutoff and those industries with above median revenue-base size standards. This specification compares industries with relatively larger size standards and shows that the smallest firms continue to receive fewer PPP loans. In column 3, we evaluate the role of size standard increases by focusing on industries with size standards above the 500-employee cutoff. We find that the share of PPP loans to smallest firms is 2.9 percentage points lower if the size standard for an industry was increased during the latest review (*Size standard increase in 2016*). Last, column 4 shows that the total allocation of PPP loans to a particular industry is unrelated to the 500-employee cutoff, which suggests that larger firms obtain PPP loans at the expense of relatively smaller firms.

Overall, this subsection highlights that PPP loans in the first round of 2020 flowed to relatively larger firms and this effect is amplified in industries with recent size standard increases. These findings complement our findings in Section 4.1., which show that increases in eligibility for small firm subsidies crowd out the smallest firms in an industry. Taken together, the results in this section suggest that changes in small business size standards have broad implications during both normal times and crisis periods for the wide range of federal programs that subsize small firms.
6. Conclusion

Following the Small Business Jobs Act of 2010, the U.S. has considerably increased eligibility for small firm subsidies. Exploiting randomness in the timing of the staggered implementation of size standard increases across industries, we provide first evidence on the causal effects of these policy changes. We find substantial effects on the composition of firm size across industries, with adverse consequences for the forces of creative destruction and labor markets.

The evidence shows that classifying a growing number of larger firms as small businesses adversely affects the smallest firms, whose share of industry employment and payroll shrinks considerably. The crowding out of the smallest firms has significant implications for real economic outcomes. Size standard increases reduce expansions and amplify contractions, both for small firms and for the industry as a whole. Furthermore, size standard increases affect labor markets by reducing employment growth. We find evidence of stable job losses and lower earnings in affected industries rather than employment reallocation to other sectors. We also find strong effects in regions with small firm concentrations that were exposed to size standard increases.

The expansion of eligibility for small firm subsidies has important implications for government programs that target small businesses. We explore two such programs: set-asides of government procurement contracts and forgivable loans in the Paycheck Protection Program. We find evidence that small firms lose contracts to companies newly classified as small businesses following size standard increases. Additionally, fewer loans were received by the smallest firms at the beginning of the Paycheck Protection Program.

Overall, the results have overarching implications for academic research and government policy. They provide causal estimates of the important role of subsidizing small businesses in economic growth and labor markets. These findings are particularly important amid the adverse
economic impact of the COVID-19 pandemic on small businesses and the ongoing debate surrounding the optimal government response to the crisis.

While our paper assesses the economic impact of changes in access to small business subsidies, it does not provide estimates of the optimal level of those subsidies or the standards that determine access to them. Further, the analyses do not consider government expenditures or the quality of the goods and services procured by the government. Hence, they should not be interpreted as welfare estimates. We leave these topics for future work.
References

Birch, David L., 1987, Job creation in America: How our smallest companies put the most people to work, The Free Press.

32

Granja, João, Christo Makridis, Constantine Yannelis, and Eric Zwick, 2020, Did the Paycheck Protection Program hit the target?, *NBER working paper*.

Moretti, Enrico, 2011, Local labor markets. In Orley Ashenfelter and David Card (Eds.), Handbook of labor economics (Vol. 4B). Amsterdam: North Holland.

Figure 1: Size Standards

This figure illustrates size standards in the United States from 2002 to 2017. Revenue-based size standards are in millions of dollars and plotted with the solid blue link on the left axis. Employee-based size standards denote the number of employees and are plotted with the dashed red line on the right axis.
Figure 2: U.S. States using Size Standards

This figure provides a map of U.S. states using the federal definition of small business based on size standards. The blue shading represents the number of laws and regulations in a state that uses U.S. federal size standards. Darker shades represent a higher number of laws and regulations using this definition in a particular state.
Figure 3: Crowding out: Dynamic difference-in-differences

This figure provides the dynamics of the difference-in-differences estimates using a four-year window around increases in size standards. Panel A plots the dynamics for the ratio of small firms using employment and Panel shows the dynamics for the ratio of small firms using payroll. Small employment ratio is the number of employees at firms with fewer than 20 employees relative to the total number of employees in an industry. Small payroll ratio is payroll for firms with fewer than 20 employees relative to the total payroll in an industry. The year of the size standard increase is the base year. Each panel includes the estimate coefficients and the associated 95% confidence intervals.

Panel A: Small Employment Ratio

Panel B: Small Payroll Ratio
Table 1
Size Standards

This table provides summary statistics for size standard changes stemming from the Small Business Jobs Act of 2010. Cumulative number of increases is the cumulative number of size standard increases from 2002 to 2017. Cumulative number of decreases is the cumulative number of size standard decreases from 2002 to 2017. Number of revenue standard increases is the number of size standard increases based on firm revenue. Average revenue standard is the average revenue standard ($ million) for industries with a revenue size standard. Number of employee standard increases is the number of size standard increases based on firm employees. Average employee standard is the average employee standard for industries with an employee size standard.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cumulative number of increases</th>
<th>Cumulative number of decreases</th>
<th>Number of revenue standard increases</th>
<th>Average revenue standard ($ million)</th>
<th>Number of employee standard increases</th>
<th>Average employee standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.8</td>
<td>0</td>
<td>557</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.8</td>
<td>0</td>
<td>557</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.8</td>
<td>0</td>
<td>557</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.6</td>
<td>0</td>
<td>557</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.6</td>
<td>0</td>
<td>557</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.6</td>
<td>0</td>
<td>556</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.4</td>
<td>0</td>
<td>554</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.3</td>
<td>0</td>
<td>554</td>
</tr>
<tr>
<td>2010</td>
<td>62</td>
<td>0</td>
<td>62</td>
<td>12.3</td>
<td>0</td>
<td>553</td>
</tr>
<tr>
<td>2011</td>
<td>62</td>
<td>0</td>
<td>62</td>
<td>12.3</td>
<td>0</td>
<td>553</td>
</tr>
<tr>
<td>2012</td>
<td>160</td>
<td>0</td>
<td>96</td>
<td>14.3</td>
<td>2</td>
<td>559</td>
</tr>
<tr>
<td>2013</td>
<td>262</td>
<td>0</td>
<td>102</td>
<td>18.1</td>
<td>0</td>
<td>559</td>
</tr>
<tr>
<td>2014</td>
<td>266</td>
<td>0</td>
<td>3</td>
<td>19.6</td>
<td>1</td>
<td>557</td>
</tr>
<tr>
<td>2015</td>
<td>266</td>
<td>0</td>
<td>0</td>
<td>19.6</td>
<td>0</td>
<td>557</td>
</tr>
<tr>
<td>2016</td>
<td>527</td>
<td>3</td>
<td>0</td>
<td>19.5</td>
<td>261</td>
<td>770</td>
</tr>
<tr>
<td>2017</td>
<td>527</td>
<td>3</td>
<td>0</td>
<td>19.5</td>
<td>0</td>
<td>770</td>
</tr>
</tbody>
</table>
Table 2
Predictive Regression

This table examines the timing of reviews for size standards by the Small Business Administration and size standard increases and the order of industries reviewed by the Small Business Administration. *Date announced* is the order of industries reviewed based on the date when the review process is announced in the Code of Federal Regulations. *Date proposed* is the order of industries reviewed based on the date that the size standard increases are proposed in the Code of Federal Regulation. *Date finalized* is the order of industries reviewed based on the date that the size standard increases are finalized in the Code of Federal Regulation. *Employment growth*, *Payroll growth*, and *Establishment growth* are the industry growth rates of each variable (in percent) from Census’ SUSB. *Size increase* is an indicator variable equaling one if the size standard increases for a particular industry. Table A.1 provides additional details on variable definitions. Standard errors are reported in parentheses and clustered at the two-digit industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

Panel A: Timing

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Date announced</th>
<th>Date proposed</th>
<th>Date finalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Employment growth</td>
<td>0.004</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.023)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Payroll growth</td>
<td>-0.009</td>
<td>-0.016</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.020)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Establishment growth</td>
<td>0.006</td>
<td>0.019</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.013)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Observations</td>
<td>475</td>
<td>475</td>
<td>475</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.009</td>
<td>0.009</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Panel B: Size Standard Increases

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Size increase</th>
<th>Size increase</th>
<th>Size increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Date announced</td>
<td>0.008</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.006)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Date proposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date finalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,016</td>
<td>1,016</td>
<td>1,016</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.003</td>
<td>0.001</td>
<td>0.000</td>
</tr>
</tbody>
</table>
This table details the summary statistics for main variables used in the analysis. **Size increase** is an indicator variable equaling one when the size standard increases for a particular industry. **Small employment ratio** is the number of employees at firms with fewer than 20 employees relative to the number of employees in an industry. **Small payroll ratio** is total payroll for firms with fewer than 20 employees relative to the total payroll in an industry. **Small establishment ratio** is the number of establishments for firms with fewer than 20 employees relative to the number of establishments in an industry. **Small firm ratio** is the number of firms with fewer than 20 employees relative to the total number of firms in an industry. **Expansions** is the number of establishments that increase employment relative to the total number of establishments in the previous year. **Contractions** is the number of establishments that decrease employment relative to the total number of establishments in the previous year. **Dynamism** is defined as the number of establishment births and expansions over the number of contractions and deaths. **Expansions**, **Contractions**, and **Dynamism** are defined for small firms with fewer than 20 employees and at the industry level. **Employment** is the log change in the total number of employees in an industry. **Payroll** is the log change in the total wages in an industry. **Aggregate job losses** is the number of separations into persistent unemployment. **Stable job losses** is the number of separations from a stable job into persistent unemployment. **Earnings for current employees** is the average earnings for all workers. **Earnings for new employees** is the average earnings for new workers. The outcomes related to job losses and earnings are standardized by subtracting the sample mean and dividing by the standard deviation. **MSA exposure to size standard increases** is the sum of size standard increases weighted by the 2003 proportion of an industry’s establishments with fewer than 20 employees in an MSA. **MSA unemployment rate** is the unemployment rate in an MSA. **MSA population** is the log of MSA population. **MSA house price growth** is the log change in MSA house prices. **MSA GDP growth** is the log change in MSA GDP. Table A.1 provides additional details on variable definitions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of observations</th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size increase</td>
<td>7,419</td>
<td>0.209</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.406</td>
</tr>
<tr>
<td>Small employment ratio</td>
<td>7,019</td>
<td>0.152</td>
<td>0.107</td>
<td>0.000</td>
<td>0.868</td>
<td>0.142</td>
</tr>
<tr>
<td>Small payroll ratio</td>
<td>7,157</td>
<td>0.137</td>
<td>0.093</td>
<td>0.000</td>
<td>0.850</td>
<td>0.132</td>
</tr>
<tr>
<td>Small establishment ratio</td>
<td>7,419</td>
<td>0.560</td>
<td>0.567</td>
<td>0.003</td>
<td>1.000</td>
<td>0.218</td>
</tr>
<tr>
<td>Small firm ratio</td>
<td>7,419</td>
<td>0.725</td>
<td>0.766</td>
<td>0.064</td>
<td>1.000</td>
<td>0.218</td>
</tr>
<tr>
<td>Expansions (small firm)</td>
<td>1,458</td>
<td>0.136</td>
<td>0.137</td>
<td>0.000</td>
<td>0.361</td>
<td>0.049</td>
</tr>
<tr>
<td>Contractions (small firm)</td>
<td>1,458</td>
<td>0.127</td>
<td>0.128</td>
<td>0.000</td>
<td>0.301</td>
<td>0.047</td>
</tr>
<tr>
<td>Dynamism (small firm)</td>
<td>1,458</td>
<td>1.068</td>
<td>1.069</td>
<td>0.000</td>
<td>3.462</td>
<td>0.283</td>
</tr>
<tr>
<td>Expansions (industry)</td>
<td>1,458</td>
<td>0.289</td>
<td>0.280</td>
<td>0.027</td>
<td>0.613</td>
<td>0.082</td>
</tr>
<tr>
<td>Contractions (industry)</td>
<td>1,458</td>
<td>0.284</td>
<td>0.273</td>
<td>0.032</td>
<td>0.696</td>
<td>0.078</td>
</tr>
<tr>
<td>Dynamism (industry)</td>
<td>1,458</td>
<td>1.046</td>
<td>1.066</td>
<td>0.214</td>
<td>2.614</td>
<td>0.293</td>
</tr>
<tr>
<td>Employment</td>
<td>7,184</td>
<td>-0.003</td>
<td>0.003</td>
<td>-1.289</td>
<td>1.763</td>
<td>0.109</td>
</tr>
<tr>
<td>Payroll</td>
<td>7,184</td>
<td>0.024</td>
<td>0.030</td>
<td>-1.163</td>
<td>1.793</td>
<td>0.120</td>
</tr>
<tr>
<td>Aggregate job losses</td>
<td>1,216</td>
<td>0.000</td>
<td>-0.348</td>
<td>-1.188</td>
<td>2.623</td>
<td>1.000</td>
</tr>
<tr>
<td>Stable job losses</td>
<td>1,216</td>
<td>0.000</td>
<td>-0.366</td>
<td>-1.156</td>
<td>3.067</td>
<td>1.000</td>
</tr>
<tr>
<td>Earnings for current employees</td>
<td>152,428</td>
<td>0.000</td>
<td>-0.173</td>
<td>-1.292</td>
<td>86.849</td>
<td>1.000</td>
</tr>
<tr>
<td>Earnings for new employees</td>
<td>152,428</td>
<td>0.000</td>
<td>-0.190</td>
<td>-1.449</td>
<td>72.236</td>
<td>1.000</td>
</tr>
<tr>
<td>MSA exposure to size standard increases</td>
<td>5,205</td>
<td>0.108</td>
<td>0.000</td>
<td>0.000</td>
<td>0.418</td>
<td>0.124</td>
</tr>
<tr>
<td>MSA unemployment rate</td>
<td>5,205</td>
<td>0.064</td>
<td>0.058</td>
<td>0.020</td>
<td>0.289</td>
<td>0.027</td>
</tr>
<tr>
<td>MSA population</td>
<td>5,205</td>
<td>12.495</td>
<td>12.234</td>
<td>10.904</td>
<td>15.685</td>
<td>0.944</td>
</tr>
<tr>
<td>MSA house price growth</td>
<td>5,205</td>
<td>0.024</td>
<td>0.024</td>
<td>-0.605</td>
<td>0.346</td>
<td>0.067</td>
</tr>
<tr>
<td>MSA GDP growth</td>
<td>5,205</td>
<td>0.036</td>
<td>0.037</td>
<td>-0.439</td>
<td>0.425</td>
<td>0.052</td>
</tr>
</tbody>
</table>
Table 4
Crowding Out of Small Firms

This table examines the effect of size standard increases on industry composition. Panel A provides the baseline results, Panel B evaluates the robustness to different thresholds for small firms, and Panel C examines robustness to heterogeneous treatment effects. Size increase is an indicator variable equaling one when the size standard increases for a particular industry. Small employment ratio is the number of employees at firms with fewer than 20 employees relative to the total number of employees in an industry. Small payroll ratio is payroll for firms with fewer than 20 employees relative to the total payroll in an industry. The small firm threshold is varied in Panel B. Industries are defined at the six-digit NAICS code level. Table A.1 provides additional details on variable definitions. All models include industry fixed effects. Models 2 and 4 in Panel A and all models in Panel B and C also include year fixed effects. Standard errors are reported in parentheses and clustered at the industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

Panel A: Baseline Results

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Small Employment Ratio</th>
<th>Small Employment Ratio</th>
<th>Small Payroll Ratio</th>
<th>Small Payroll Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Size increase</td>
<td>-0.009***</td>
<td>-0.005**</td>
<td>-0.014***</td>
<td>-0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,019</td>
<td>7,019</td>
<td>7,157</td>
<td>7,157</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.967</td>
<td>0.967</td>
<td>0.959</td>
<td>0.959</td>
</tr>
</tbody>
</table>

Panel B: Robustness of Small Firm Threshold

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Small Employment Ratio</th>
<th>Small Employment Ratio</th>
<th>Small Payroll Ratio</th>
<th>Small Payroll Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Size increase</td>
<td>-0.011***</td>
<td>-0.018***</td>
<td>-0.013***</td>
<td>-0.020***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Small firm threshold</td>
<td><100 employees</td>
<td><500 employees</td>
<td><100 employees</td>
<td><500 employees</td>
</tr>
<tr>
<td>Observations</td>
<td>6,920</td>
<td>7,082</td>
<td>7,052</td>
<td>7,136</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.961</td>
<td>0.947</td>
<td>0.958</td>
<td>0.945</td>
</tr>
</tbody>
</table>
Table 4 (continued)
Panel C: Robustness of Heterogeneous Treatment Effects

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Small Employment Ratio</th>
<th>Small Payroll Ratio</th>
<th>Small Employment Ratio</th>
<th>Small Payroll Ratio</th>
<th>Small Establishment Ratio</th>
<th>Small Payroll Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Size increase</td>
<td>-0.006**</td>
<td>-0.008***</td>
<td>-0.008*</td>
<td>-0.007*</td>
<td>-0.011**</td>
<td>-0.011**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sample restriction</td>
<td>Omit last treatment period</td>
<td>Sectors with both size standard types</td>
<td>Both restrictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6,558</td>
<td>6,689</td>
<td>1,314</td>
<td>1,337</td>
<td>1,147</td>
<td>1,167</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.972</td>
<td>0.968</td>
<td>0.959</td>
<td>0.948</td>
<td>0.964</td>
<td>0.955</td>
</tr>
</tbody>
</table>
Table 5
Creative Destruction

This table explores the role of size standard increases on creative destruction. Panel A provides estimates for small firms and Panel B details estimates for the total industry. Size increase proportion is the proportion of size standard increases within a particular industry-year. Expansions is the number of establishments that increase employment relative to the total number of establishments in the previous year. Contractions is the number of establishments that decrease employment relative to the total number of establishments in the previous year. Dynamism is defined as the number of establishment births and expansions over the number of contractions and deaths. Table A.1 provides additional details on variable definitions. Industries are defined at the four-digit NAICS code level. All models include industry and year fixed effects. Standard errors are reported in parentheses and clustered at the industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

Panel A: Small Firms

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Expansions (1)</th>
<th>Contractions (2)</th>
<th>Dynamism (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size increase proportion</td>
<td>-0.012*** (0.003)</td>
<td>0.010*** (0.002)</td>
<td>-0.109*** (0.027)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,458</td>
<td>1,458</td>
<td>1,458</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.896</td>
<td>0.905</td>
<td>0.660</td>
</tr>
</tbody>
</table>

Panel B: Industry

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Expansions (1)</th>
<th>Contractions (2)</th>
<th>Dynamism (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size increase proportion</td>
<td>-0.035*** (0.008)</td>
<td>0.038*** (0.008)</td>
<td>-0.142*** (0.040)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,458</td>
<td>1,458</td>
<td>1,458</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.762</td>
<td>0.724</td>
<td>0.566</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>Employment</td>
<td>Payroll</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>Size increase</td>
<td>-0.015***</td>
<td>-0.012*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>7,184</td>
<td>7,184</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.088</td>
<td>0.098</td>
<td></td>
</tr>
</tbody>
</table>

Table 6
Labor Markets
This table studies the effect of size standard increases on industry labor markets. Size increase is an indicator variable equaling one when the size standard increases for a particular industry. Employment is the log change in the total number of employees in an industry. Payroll is the log change in the total wages in an industry. Industries in this table are defined at the six-digit NAICS code level. Table A.1 provides additional details on variable definitions. All models include industry and year fixed effects. Standard errors are reported in parentheses and clustered at the industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.
Table 7
Job Losses and Earnings

This table examines the effect of size standard increases on job losses in Panel A and worker earnings in Panel B. Size increase proportion is the proportion of size standard increases within a particular industry-year. Aggregate job losses is the number of separations into persistent unemployment. Stable job losses is the number of separations from a stable job into persistent unemployment. Earnings for current employees is the average earnings for all workers. Earnings for new employees is the average earnings for new workers. Industries are defined at the two-digit NAICS code level in Panel A and the four-digit NAICS code level in Panel B. The unit of observation is an industry-year in Panel A and an industry-state-year in Panel B. The outcomes in each panel are standardized by subtracting the sample mean and dividing by the standard deviation. All models include industry and year fixed effects in Panel A and all models include industry, year, and state fixed effects in Panel B. The specifications in Panel A are weighted by the number of industries at the six-digit NAICS code level. Standard errors are reported in parentheses and clustered at the industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

Panel A: Job Losses

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Aggregate Job Losses</th>
<th>Stable Job Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Size increase proportion</td>
<td>0.505**</td>
<td>0.358**</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,216</td>
<td>1,216</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.897</td>
<td>0.903</td>
</tr>
</tbody>
</table>

Panel B: Earnings

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Earnings for Current Employees</th>
<th>Earnings for New Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Size increase proportion</td>
<td>-0.051*</td>
<td>-0.047**</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>152,428</td>
<td>152,428</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.336</td>
<td>0.411</td>
</tr>
</tbody>
</table>
This table studies the role of size standard increases on local unemployment. *MSA exposure to size standard increases* is the sum of size standard increases weighted by the 2003 proportion of an industry’s establishments with fewer than 20 employees in an MSA. *MSA unemployment rate* is the unemployment rate in an MSA. *MSA population* is the log of MSA population. *MSA house price growth* is the log change in MSA house prices. *MSA GDP growth* is the log change in MSA GDP. All models include MSA and year fixed effects. Standard errors are reported in parentheses and clustered at the MSA level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>MSA Unemployment Rate</th>
<th>MSA Unemployment Rate</th>
<th>MSA Unemployment Rate</th>
<th>MSA Unemployment Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>MSA exposure to size standard increases</td>
<td>0.076*** (0.020)</td>
<td>0.068*** (0.020)</td>
<td>0.079*** (0.018)</td>
<td>0.071*** (0.017)</td>
</tr>
<tr>
<td>MSA population</td>
<td>0.011** (0.004)</td>
<td>0.008** (0.004)</td>
<td>0.008** (0.004)</td>
<td></td>
</tr>
<tr>
<td>MSA house price growth</td>
<td>-0.080*** (0.005)</td>
<td>-0.073*** (0.005)</td>
<td></td>
<td>-0.031*** (0.004)</td>
</tr>
<tr>
<td>MSA GDP growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>5,205</td>
<td>5,205</td>
<td>5,205</td>
<td>5,205</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.874</td>
<td>0.875</td>
<td>0.898</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Table 9
Procurement Contracts

This table examines the role of procurement contracts in size standard increases. In this table, small firms are based on the designation of small businesses in the contracts data. *Size increase* is an indicator variable equaling one when the size standard increases for a particular industry. *Percent of contracts to always small firms* is the proportion of contracts awarded to firms that are designated as small before a size standard increase. *Percent of contracts to newly small firms* is the proportion of contracts awarded to firms that are designated as small only after a size standard increase. *Contract amount to small firms* is the log of one plus the amount of contracts awarded to firms that received contracts before the size standards change. The sample only includes industries with a size standard increase and firms that received contracts before the size standards change. All models include industry and year fixed effects. Standard errors are reported in parentheses and clustered at the industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Percent of Contracts to Always Small Firms (1)</th>
<th>Percent of Contracts to Newly Small Firms (2)</th>
<th>Contract Amount to Small Firms (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size increase</td>
<td>-0.056*** (0.014)</td>
<td>0.014*** (0.003)</td>
<td>0.007 (0.163)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,378</td>
<td>7,378</td>
<td>7,378</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.586</td>
<td>0.250</td>
<td>0.745</td>
</tr>
</tbody>
</table>
Table 10
Paycheck Protection Program

This table explores the role of size standards in the Paycheck Protection Program. Size standards > 500 employees is an indicator variable equaling one when the size standards in a particular industry are greater than 500 employees. Size standard increase in 2016 is an indicator variable equaling one if the size standards for a particular industry increased in 2016. Share of loan amount to smallest firms is the amount of PPP loans to firms with fewer than 20 jobs reported relative to the total amount of PPP loans to a particular industry. Total loan amount is the log of the amount of PPP loans to a particular industry. Small establishment ratio is number of establishments with fewer than 20 employees relative to the total number of establishments in an industry. Establishments is the number of establishments in a particular industry. Industries are defined at the six-digit NAICS code level. Standard errors are reported in parentheses and clustered at the industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Share of Loan Amount to Smallest Firms</th>
<th>Total Loan Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model (1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Size standards > 500 employees</td>
<td>-0.039***</td>
<td>-0.109***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Size standard increase in 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small establishment ratio</td>
<td>0.092***</td>
<td>0.132***</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Establishments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>All industries with employee size standards</th>
<th>Industries with size standards > 500 employees and above median revenue size standards</th>
<th>Industries with size standards > 500 employees</th>
<th>All industries with employee size standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>495</td>
<td>503</td>
<td>301</td>
<td>495</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.083</td>
<td>0.271</td>
<td>0.037</td>
<td>0.642</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Description</td>
<td>Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size increase</td>
<td>An indicator variable equaling one when the size standards increase for a particular industry.</td>
<td>Code of Federal Regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size increase proportion</td>
<td>Proportion of size standard increases within a particular industry-year.</td>
<td>Code of Federal Regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA exposure to size standard increases</td>
<td>Sum of size standard increases weighted by the proportion of an industry’s establishments with fewer than 20 employees in an MSA in 2003.</td>
<td>Code of Federal Regulations and County Business Patterns (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date announced</td>
<td>Order of industries reviewed based on the date when the review process is announced in the Code of Federal Regulations.</td>
<td>Code of Federal Regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date proposed</td>
<td>Order of industries reviewed based on the date that the size standard increases are proposed in the Code of Federal Regulation.</td>
<td>Code of Federal Regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date finalized</td>
<td>Order of industries reviewed based on the date that the size standard increases are finalized in the Code of Federal Regulation.</td>
<td>Code of Federal Regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small employment ratio</td>
<td>Number of employees at firms with fewer than 20 employees relative to the total number of employees in an industry.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small payroll ratio</td>
<td>Payroll for firms with fewer than 20 employees relative to the total payroll in an industry.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small establishment ratio</td>
<td>Number of establishments for firms with fewer than 20 employees relative to the total number of establishments in an industry.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small firm ratio</td>
<td>Number of firms with fewer than 20 employees relative to the total number of firms in an industry.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small employment ratio</td>
<td>Number of employees at firms with fewer than 20 employees relative to the total number of employees in an industry.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansions</td>
<td>Number of establishments that increase employment relative to the total number of establishments in the previous year.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contraction s</td>
<td>Number of establishments that decrease employment relative to the total number of establishments in the previous year.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamism</td>
<td>Number of establishment births and expansions over the number of contractions and deaths.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>Log change in the total number of employees in an industry.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Name</td>
<td>Description</td>
<td>Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payroll</td>
<td>Log change in the total wages in an industry.</td>
<td>Statistics of U.S. Businesses (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate job losses</td>
<td>Number of separations into persistent unemployment. This variable is standardized by subtracting the sample mean and dividing by the standard deviation.</td>
<td>Job-to-Job Flows (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable job losses</td>
<td>Number of separations from a stable job into persistent unemployment. This variable is standardized by subtracting the sample mean and dividing by the standard deviation.</td>
<td>Job-to-Job Flows (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earnings for current employees</td>
<td>Average earnings for all workers. This variable is standardized by subtracting the sample mean and dividing by the standard deviation.</td>
<td>Quarterly Workforce Indicators (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earnings for new employees</td>
<td>Average earnings for new workers. This variable is standardized by subtracting the sample mean and dividing by the standard deviation.</td>
<td>Quarterly Workforce Indicators (Census Bureau)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA unemployment rate</td>
<td>Unemployment rate in an MSA.</td>
<td>Bureau of Labor Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA population</td>
<td>Log of MSA population.</td>
<td>American Community Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA house price growth</td>
<td>Log change in MSA house prices.</td>
<td>Federal Housing Finance Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA GDP growth</td>
<td>Log change in MSA GDP.</td>
<td>Bureau of Economic Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of contracts to always small firms</td>
<td>Proportion of contracts awarded to firms that are designated as small before a size standard increase.</td>
<td>USASpending.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of contracts to newly small firms</td>
<td>Proportion of contracts awarded to firms that are designated as small only after a size standard increase.</td>
<td>USASpending.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contract amount to small firms</td>
<td>Log of one plus the amount of contracts awarded to firms that are designated as small.</td>
<td>USASpending.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of loan amount to smallest firms</td>
<td>Amount of PPP loans to firms with fewer than 20 jobs reported relative to the total amount of PPP loans to a particular industry.</td>
<td>Small Business Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total loan amount</td>
<td>Log of the amount of PPP loans to a particular industry.</td>
<td>Small Business Administration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.2
Federal and State Use of Size Standards

This table lists federal programs and legislation and U.S. states using size standards to define small businesses. Panel A highlights numerous federal programs and laws using size standards. Panel B includes states with legislation or regulation using federal size standard definitions.

Panel A: Federal Programs and Legislation

<table>
<thead>
<tr>
<th>Program or Legislation Name</th>
<th>Subsidy Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>504/CDC Loans</td>
<td>Program</td>
</tr>
<tr>
<td>7(a) Loans</td>
<td>Program</td>
</tr>
<tr>
<td>COVID-19 Relief</td>
<td>Program</td>
</tr>
<tr>
<td>Economic Injury Disaster Loans (EIDL)</td>
<td>Program</td>
</tr>
<tr>
<td>Export Express Loans</td>
<td>Program</td>
</tr>
<tr>
<td>Export Working Loan Capital Program</td>
<td>Program</td>
</tr>
<tr>
<td>Federal and State Technology Partnership Program (FAST)</td>
<td>Program</td>
</tr>
<tr>
<td>International Trade Loan Program</td>
<td>Program</td>
</tr>
<tr>
<td>Microloan Program</td>
<td>Program</td>
</tr>
<tr>
<td>Revolving Loan Fund Program</td>
<td>Program</td>
</tr>
<tr>
<td>Small Business Investment Company (SBIC) Program</td>
<td>Program</td>
</tr>
<tr>
<td>Small Business Lending Fund</td>
<td>Program</td>
</tr>
<tr>
<td>State Trade Expansion Program (STEP)</td>
<td>Program</td>
</tr>
<tr>
<td>Surety Bonds</td>
<td>Program</td>
</tr>
<tr>
<td>Business Opportunity Development Reform Act</td>
<td>Legislation</td>
</tr>
<tr>
<td>Small Business Credit and Business Opportunity Enhancement Act</td>
<td>Legislation</td>
</tr>
<tr>
<td>Small Business Reauthorization Act</td>
<td>Legislation</td>
</tr>
<tr>
<td>Farm Security and Rural Investment Act</td>
<td>Legislation</td>
</tr>
<tr>
<td>American Recovery and Reinvestment Act</td>
<td>Legislation</td>
</tr>
<tr>
<td>Trade Facilitation and Trade Enforcement Act</td>
<td>Legislation</td>
</tr>
<tr>
<td>CARES Act</td>
<td>Legislation</td>
</tr>
</tbody>
</table>

Panel B: U.S. States

Arizona	Missouri
California	Montana
Colorado	Nevada
Connecticut	New Jersey
Florida	New Mexico
Hawaii	North Carolina
Illinois	Oregon
Kentucky	Pennsylvania
Louisiana	Rhode Island
Maine	Texas
Maryland	Utah
Massachusetts	Virginia
Minnesota	Washington
Mississippi	Wyoming
Table A.3
Summary Statistics for Procurement Contracts
This table provides summary statistics for U.S. procurement contracts to small businesses. In this table, small firms are based on the designation of small businesses in the contracts data. Number of contracts to small firms is a count of the number of contracts awarded to small firms. Contract amount to small firms is the amount of contracts awarded to small firms in millions of dollars. Contract amount to all firms is the amount of contracts awards to all firms in millions of dollars. Percent of small firms is the proportion of contract amount awarded to small firms relative to Contract amount to all firms.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Contracts to Small Firms</th>
<th>Contract Amount to Small Firms</th>
<th>Contract Amount to All Firms</th>
<th>Percent to Small Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>413,627</td>
<td>54,239</td>
<td>283,826</td>
<td>19.1%</td>
</tr>
<tr>
<td>2003</td>
<td>751,725</td>
<td>64,473</td>
<td>338,828</td>
<td>19.0%</td>
</tr>
<tr>
<td>2004</td>
<td>1,118,404</td>
<td>66,242</td>
<td>355,005</td>
<td>18.7%</td>
</tr>
<tr>
<td>2005</td>
<td>1,455,640</td>
<td>78,129</td>
<td>380,672</td>
<td>20.5%</td>
</tr>
<tr>
<td>2006</td>
<td>2,138,570</td>
<td>82,515</td>
<td>454,945</td>
<td>18.1%</td>
</tr>
<tr>
<td>2007</td>
<td>2,096,819</td>
<td>89,171</td>
<td>463,303</td>
<td>19.2%</td>
</tr>
<tr>
<td>2008</td>
<td>2,033,379</td>
<td>97,714</td>
<td>564,435</td>
<td>17.3%</td>
</tr>
<tr>
<td>2009</td>
<td>1,624,359</td>
<td>100,605</td>
<td>519,327</td>
<td>19.4%</td>
</tr>
<tr>
<td>2010</td>
<td>1,658,929</td>
<td>125,444</td>
<td>554,870</td>
<td>22.6%</td>
</tr>
<tr>
<td>2011</td>
<td>1,561,575</td>
<td>102,702</td>
<td>524,779</td>
<td>19.6%</td>
</tr>
<tr>
<td>2012</td>
<td>1,398,217</td>
<td>99,576</td>
<td>541,919</td>
<td>18.4%</td>
</tr>
<tr>
<td>2013</td>
<td>1,158,509</td>
<td>89,215</td>
<td>427,005</td>
<td>20.9%</td>
</tr>
<tr>
<td>2014</td>
<td>1,401,936</td>
<td>99,404</td>
<td>454,644</td>
<td>21.9%</td>
</tr>
<tr>
<td>2015</td>
<td>1,863,621</td>
<td>97,220</td>
<td>436,954</td>
<td>22.2%</td>
</tr>
<tr>
<td>2016</td>
<td>2,054,976</td>
<td>106,971</td>
<td>489,467</td>
<td>21.9%</td>
</tr>
<tr>
<td>2017</td>
<td>2,155,032</td>
<td>113,202</td>
<td>510,436</td>
<td>22.2%</td>
</tr>
</tbody>
</table>
Table A.4
Additional Robustness for Crowding Out of Small Firms

This table examines additional robustness using alternative outcomes for the effect of size standard increases on industry composition. *Size increase* is an indicator variable equaling one when the size standard increases for a particular industry. *Small establishment ratio* is the number of establishments for firms with fewer than 20 employees relative to the total number of establishments in an industry. *Small firm ratio* is the number of firms with fewer than 20 employees relative to the total number of firms in an industry. Industries are defined at the six-digit NAICS code level. Table A.1 provides additional details on variable definitions. All models include industry fixed effects. Models 2 and 4 in also include year fixed effects. Standard errors are reported in parentheses and clustered at the industry level. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Small Establishment Ratio</th>
<th>Small Establishment Ratio</th>
<th>Small Firm Ratio</th>
<th>Small Firm Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (1)</td>
<td>-0.016***</td>
<td>-0.011***</td>
<td>-0.004**</td>
<td>-0.006**</td>
</tr>
<tr>
<td>Size increase</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,419</td>
<td>7,419</td>
<td>7,419</td>
<td>7,419</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.963</td>
<td>0.963</td>
<td>0.969</td>
<td>0.969</td>
</tr>
</tbody>
</table>