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Abstract

Insurance has an intertemporal aspect as insurance premia have to be paid up front.
We argue that the financing of insurance is key to understanding basic insurance
patterns and insurers’ balance sheets. Limited enforcement implies that insurance is
globally monotone increasing in household net worth and income, incomplete, and
precautionary. These results hold in economies with income risk, durable goods and
collateral constraints, and durable goods price risk, under quite general conditions.
In equilibrium, insurers are financial intermediaries with collateralized loans as as-
sets and diversified portfolios of insurance claims as liabilities. Collateral scarcity
lowers the interest rate, reduces insurance, and increases inequality.

JEL Classification: D91, E21, G22.

Keywords: Household finance; Collateral; Insurance; Risk management; Financial
constraints

∗We thank Hengjie Ai, Mariacristina De Nardi, Emmanuel Farhi, Nobu Kiyotaki, Ralph Koijen, David
Laibson, Martin Oehmke, Tomek Piskorski, Alp Simsek, Jeremy Stein, Moto Yogo, George Zanjani, and
seminar participants at the AEA Annual Meeting, Duke, the NBER-Oxford Säıd-CFS-EIEF Conference
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1 Introduction

In economics, insurance is typically thought of as trade across states. With limited

enforcement, however, trade across states is linked to intertemporal trade. Indeed, in such

an environment insurance may be better viewed as state-contingent savings as insurance

premia need to be paid in advance. Since insurance is state-contingent saving, savings

and insurance are intimately connected. Households with limited funds may not want to

save and hence may choose to insure less or not at all. We argue that the intertemporal

nature of insurance is key to understanding both the basic relation between insurance and

household net worth as well as the asset-and-liability structure of the insurance sector.

Because insurance premia are paid in advance, the insurance sector has positive assets.

We provide a dynamic model in which households’ ability to promise to pay is subject

to limited enforcement. We first study a benchmark model without collateral in partial

equilibrium; limited enforcement implies that households have access to complete markets

for state-contingent claims subject to short-sale constraints. Our first main result is

that optimal insurance of risk averse households whose income (net of expenditures for

health and other non-discretionary spending needs) follows a stationary Markov chain

with positive persistence is globally monotone increasing in household net worth and

income, and incomplete, even in the long run, that is, under the stationary distribution

of household net worth. Thus, the limited ability to pledge restricts and links financing

and insurance. Given this link, households limit their insurance and may not participate

in insurance markets at all when their current funds are sufficiently low.

Our second main result is that in our model state-contingent savings are precaution-

ary, that is, an increase in uncertainty leads to an increase in state-contingent savings.

Notably, risk aversion is sufficient for this result. In contrast, in the classic buffer stock

savings model of Bewley (1977), Aiyagari (1994), and others, with risk-free assets only,

assumptions about prudence, that is, the third derivative of the utility function, are re-

quired to guarantee that an increase in uncertainty increases savings (see Leland (1968)).

We extend these results to an economy with durable goods that households can pledge

as collateral and borrow against, and show that the increasing insurance result generalizes.

In practice, households’ primary financing needs are two: purchases of durable goods and

the accumulation of human capital. Households consume the services of durable goods,

particularly housing, and the purchase of such goods needs to be financed. Moreover,

investment in human capital requires financing, and education and learning-by-doing

imply an age-income profile which is upward sloping on average. In the data, the bulk

of financing actually extended to households is to finance durable goods.1 Thus, our

1Indeed, more than 90% of household liabilities are attributable to durable goods purchases, mainly
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model in which all household borrowing needs to be collateralized by durable goods is

empirically plausible.2

We then study the general equilibrium in the economy with durable goods in which

the market for collateralized claims clears, determining the equilibrium interest rate.

Our third main result is to provide a theory of a representative insurance company as a

diversified financial intermediary, akin to Diamond’s (1984) theory of banks as diversified

delegated monitors. In our model, the insurance company’s assets are loans collateralized

by durable goods, say mortgages, and its liabilities are diversified portfolios of insurance

claims, as in practice. The fact that insurance companies have positive assets, we argue,

is a consequence of the intertemporal nature of insurance. The role of asset and liability

management of insurance companies is studied in a growing recent literature (see, for

example, Koijen and Yogo (2015)).3

If durable goods are sufficiently collateralizable, collateral is abundant, the equilibrium

interest rate equals the rate of time preference, and households are fully insured in a

stationary equilibrium. Otherwise, when collateral is scarce, our fourth main result shows

that the interest rate is below the rate of time preference, and insurance is incomplete;

the characterization of insurance above applies. Moreover, the more scarce collateral is,

the lower the interest rate, the less insurance, and the more wealth and consumption

inequality there is in a stationary equilibrium. An interest rate on collateralized claims

below the rate of time preference corresponds to such claims trading at a “liquidity

premium,” as in Holmström and Tirole (1998, 2011), but in our economy the premium

can be positive even when risk is purely idiosyncratic unlike in their model.

Finally, we consider durable goods price risk, in addition to income risk, and provide

conditions for increasing risk management. Under some assumptions, households partially

real estate (around 80%) and vehicles (around 6%), and less than 4% of household liabilities are at-

tributable to education purposes. Data from the U.S. Flow of Funds Accounts for the first quarter of

2009 shows that home mortgages are 78% of household liabilities and consumer credit is about 19%

and, according to the Federal Reserve Statistical Release G.19, 12% is non-revolving consumer credit

(including automobile loans and non-revolving loans for mobile homes, boats, trailers, education, or va-

cations). Data from the 2007 Survey of Consumer Finances on the purpose of debt shows that in 2007,

83% of household debt is due to the purchase or improvement of a primary residence or other residential

property, 6% to vehicle purchases, and less than 4% to education.
2While households are able to borrow to finance human capital investment only to a limited extent,

the upward-sloping age-income profiles resulting from such investment are nevertheless important as they

give households an incentive to borrow using other means, namely, by financing durable goods.
3The capitalization of insurance companies is shown to affect the pricing of property-casualty insurance

(see Gron (1994)) and their sales of corporate bonds (see, for example, Ellul, Jotikasthira, and Lundblad

(2011) and Ellul, Jotikasthira, Lundblad, and Wang (2015)). Koijen and Yogo (2015) provide evidence

that the pricing behavior of life insurers is significantly affected by financial frictions.
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insure income risk but do not hedge durable goods price risk at all. When households can

choose to rent durables as well as buy them, we show that households with low net worth

rent and that renters may hedge high durable goods prices. Shiller (1993) has argued that

markets that allow households to manage their risks would significantly improve welfare

and that the absence of such markets hence presents an important puzzle. For example,

Shiller (2008) writes that “[t]he near absence of derivatives markets for real estate ... is a

striking anomaly that cries out for explanation and for actions to change the situation.”

We provide a rationale why households may not use such markets even if they existed.

And given this lack of demand from households, the absence of such markets may not

be so puzzling after all. The explanation we provide is simple: households’ primary

concern is financing, that is, shifting funds from the future to today, not insurance, that

is, not transferring funds across states in the future. Risk management would require

households to make promises to pay in high income states in the future, but this would

reduce households’ ability to promise to pay in high income states to finance durable goods

purchases today, because households’ total promises are limited by collateral constraints.

Thus, the cost of risk management may be too high.

Consistent with the view that insurance and financing are linked, evidence on U.S.

households suggests that poor (and financially constrained) households are less well in-

sured against many types of risks, such as health, death, or flood risks, than richer (and

less financially constrained) households. Most pertinently, Fang and Kung (2012) study

panel data on life insurance coverage and find that income shocks are a key determinant

of individuals’ decisions to maintain or lapse insurance coverage; specifically, “individu-

als who experience negative income shocks are more likely to lapse all coverage.” This

within-household variation in insurance coverage is consistent with the predictions of

our model. Furthermore, a similar positive relation between income and insurance has

been documented for farmers in developing economies using archival data, surveys, and

field experiments. One important consequence of the limited insurance by constrained

households is that such households are then more susceptible to shocks.

We show how to derive the collateral constraints in our model from an environment

with limited enforcement in the spirit of Kehoe and Levine (1993) and Kocherlakota

(1996). However, while these models assume that households can be excluded from in-

tertemporal trade if they default on their promises, in our model enforcement is more

limited as households cannot be excluded from financial markets, which is similar to the

limits on enforcement considered by Chien and Lustig (2010) in an endowment economy.

In our environment, the optimal dynamic contract can be implemented with complete

markets in one-period ahead Arrow securities subject to state-by-state collateral con-
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straints. This rather tractable decentralization of the optimal contract is similar in spirit

to the decentralization in Alvarez and Jermann (2000), but the borrowing constraints are

more straightforward as borrowing is simply constrained to be no more than a fraction

of the value of household’s durable assets in each state next period, whereas the endoge-

nous solvency constraints in their model are history-dependent. Our decentralization is

hence very similar to the market structure in the standard incomplete markets model

except of course that it allows contingent claims. Our main contribution is a general

characterization of dynamic insurance behavior and the nature of insurers.4

Much of the economics literature on insurance has focused on moral hazard (see Holm-

ström (1979)) and adverse selection (see Rothschild and Stiglitz (1976)) as barriers to in-

surance. While these frictions are important, we consider limited enforcement as the only

friction in our model in order to focus on the relation between intertemporal trade and

insurance across states.5 This allows us to characterize the dynamic behavior of savings

and insurance analytically and obtain global characterization results. We also abstract

from life-cycle patterns for the sake of analytical tractability. Further, one might consider

behavioral issues, such as hyperbolic discounting or optimism, and financial literacy as

reasons for underinsurance. However, the challenge for all these theories is that they do

not predict the relation between insurance and net worth in the cross section of households

and within households over time.

In the model, all shocks are priced in a risk-neutral way, that is, we focus primarily on

idiosyncratic shocks, such as death, health shocks, accidents, fire, or disability – risk that

insurers can diversify away perfectly. That said, we think our model applies to aggregate

shocks, such as earthquakes, floods, or house prices, as well.6 Moreover, we model the

shocks directly as income shocks, which should be interpreted as income net of non-

discretionary expenditure shocks for health, accidents, fire, and so forth. One could argue

that such expenditures and events are to a large extent observable and indeed we assume

this throughout, thus abstracting away from other agency problems. This allows us to

focus on the novel aspect of our model, the connection between financing and insurance.

Finally, while incomplete markets models allow for intertemporal consumption smoothing,

they do not allow an analysis of insurance per se. Indeed, Kaplan and Violante (2010) find

4Alvarez and Jermann (2000) and Chien and Lustig (2010) study the implications of limited enforce-

ment for asset pricing and Ai and Li (2015) study the implications for managerial compensation.
5The intertemporal nature of insurance we stress is that insurance premia need to be paid in advance,

whereas Hirshleifer (1971) analyzes a different intertemporal aspect of insurance, namely that insurance

needs to be contracted on in advance, before the state is observed, to realize the gains from trade.
6For aggregate shocks, risk-neutral pricing is clearly a simplifying assumption, although we think our

basic insight would carry over to an environment where aggregate risk is priced as well.
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that households in the data have access to more consumption insurance against permanent

earnings shocks than a calibrated life-cycle version of the standard incomplete-markets

model suggests and call for alternative models of insurance. We provide such a model

based on limited enforcement.

In related work, Rampini and Viswanathan (2010, 2013) study the relation between

financing and risk management for firms in an environment with risk neutral entrepreneurs

and a concave production function.7 They show that severely constrained firms do not

hedge at all, but the fact that firms with higher net worth also invest more does not

allow a more general analytical characterization. In contrast, our model with risk averse

households allows us to prove much more general results. Specifically, we provide a general

characterization of the relation between insurance and net worth and show that insurance

is monotone increasing in net worth globally under quite general conditions. Moreover,

our global results use only risk aversion, whereas their result requires the assumption that

the production function satisfies an Inada condition. In addition, the relation between

households’ insurance and income or wealth is of independent interest and the subject

of extensive recent empirical research and an intense policy debate. Finally, and most

importantly, we consider insurance in general equilibrium, rather than partial equilibrium,

and provide a theory of the asset-and-liability structure of insurance firms.

Section 2 analyzes insurance in an economy with income risk only, derives our first

main result on globally monotone increasing insurance, and shows that households’ state-

contingent savings are precautionary, our second main result. Section 3 extends the model

to an economy with durable goods and shows how the increasing insurance result gener-

alizes. Section 4 studies the general equilibrium in the market for collateralized claims

in the economy with durable goods and provides our theory of insurance companies with

collateralized loans as assets and a diversified portfolio of insurance claims as liabilities,

our third main result, as well as our fourth main result on the effect of collateral scarcity

on insurance. Durable goods price risk management is analyzed in Section 5; this section

also considers households’ ability to rent durable goods and the interaction between the

rent vs. buy decision and risk management.8 Section 6 reviews the evidence on insurance.

Section 7 concludes. All proofs are in Appendix A.

7The rationale for risk management in their model is that the value function of a firm subject to

financial constraints is concave in net worth, making the firm effectively risk averse. Li, Whited, and

Wu (2016) structurally estimate the debt dynamics in a version of this model.
8Two recent studies consider the asset pricing implications of housing in endowment economies with

similar preferences over two goods, (nondurable) consumption and housing services with a frictionless

rental market for housing: Lustig and Van Nieuwerburgh (2005) study the role of solvency constraints

similar to ours and Piazzesi, Schneider, and Tuzel (2007) analyze the frictionless benchmark.
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2 Dynamic Model of Insurance

In this section we consider an endowment economy in partial equilibrium and show that

optimal insurance is incomplete and globally monotone increasing in households’ net

worth, that is, richer households are better insured, our first main result. Moreover,

we show that insurance is precautionary, that is, increases when uncertainty is higher,

our second main result, and there is a sense in which “the poor can’t afford insurance.”

Finally, we characterize insurance in the long run.

2.1 Insurance in an Endowment Economy

Consider insurance in an endowment economy. Time is discrete and the horizon is in-

finite. Households have preferences E [
∑∞

t=0 β
tu(ct)] where we assume that β ∈ (0, 1)

and u(c) is strictly increasing, strictly concave, continuously differentiable, and satisfies

limc→0 uc(c) =∞ and limc→∞ uc(c) = 0. Households’ income y(s) follows a Markov chain

on state space s ∈ S with transition matrix Π(s, s′) > 0 describing the transition probabil-

ity from state s to state s′, and ∀s, s+, s+ > s, y(s+) > y(s) > 0. We interpret household

income as net of non-discretionary spending needs for health, accidents, and other such

shocks.9 We use the shorthand y′ ≡ y(s′) for income in state s′ next period wherever

convenient and analogously for other variables. Moreover, let s = min{s : s ∈ S} and

s̄ = max{s : s ∈ S} and analogously for y and ȳ and let S also denote the cardinality of

S in a slight abuse of notation.

Lenders are risk neutral and discount the future at rate R−1 > β, that is, are patient

relative to the households, and have deep pockets and abundant collateral in all dates

and states; lenders are thus willing to provide any state-contingent claim at an expected

return R.10 We take the interest rate R as given for now, but endogenize the interest rate

in general equilibrium in Section 4.11

Enforcement is limited as follows: households can abscond with their income and

cannot be excluded from markets for state-contingent claims in the future. Extending the

results in Rampini and Viswanathan (2010, 2013) to this environment with risk aversion,

we show in Appendix B that the optimal dynamic contract with limited enforcement can

9A significant cost of health shocks may be to force reduced labor force participation, reducing income.
10We discuss the case in which R = β−1 in the online appendix. In models of buffer stock savings with

idiosyncratic risk and incomplete markets, Bewley (1977), Huggett (1993), Aiyagari (1994), and others

show that aggregate asset holdings are finite only if R−1 > β in equilibrium.
11The general equilibrium in Section 4 applies to an economy with durable goods, which serve as

collateral backing households’ collateralized state-contingent claims, whereas in the endowment economy

considered in this section we require outside lenders supplying claims.
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be implemented with complete markets in one-period ahead Arrow securities subject to

short-sale constraints (which are a special case of collateral constraints).12

In some parts of the analysis, we consider stochastically monotone Markov chains

which exhibit the following notion of positive persistence:

Definition 1 (Monotone Markov chain). A Markov chain Π(s, s′) is stochastically mono-

tone, if it displays first-order stochastic dominance (FOSD), that is, if ∀s, s+, ŝ
′, s+ > s,∑

s′≤ŝ′ Π(s+, s
′) ≤

∑
s′≤ŝ′ Π(s, s′).

This definition requires that the distribution of states next period conditional on the

current state s+ first-order stochastically dominates the distribution conditional on the

current state s, for all s+ > s. A Markov chain which is independent over time, that is,

satisfies Π(s, s′) = π(s′), ∀s ∈ S, is stochastically monotone.13 Arguably, such positive

persistence in household income is plausible empirically.

The household solves the following recursive problem by choosing (non-negative) con-

sumption c and a portfolio of Arrow securities h′ for each state s′ (and associated net

worth w′) given the exogenous state s and the net worth w (cum current income),

v(w, s) ≡ max
c,h′,w′∈R+×R2S

u(c) + βE[v(w′, s′)|s] (1)

subject to the budget constraints for the current and next period, ∀s′ ∈ S,

w ≥ c+ E[R−1h′|s], (2)

y′ + h′ ≥ w′, (3)

and the short-sale constraints, ∀s′ ∈ S,

h′ ≥ 0. (4)

Since the return function is concave, the constraint set convex, and the operator

defined by the program in (1) to (4) satisfies Blackwell’s sufficient conditions, there exists

12These one-period ahead Arrow securities are akin to the cash-in-advance contracts in Bulow and

Rogoff (1989). Krueger and Uhlig (2006) provide a model of competitive risk sharing and switching costs

and obtain short sale constraints, a special case of the collateral constraints in our model, in the limit as

switching costs go to zero. Alvarez and Jermann (2000) provide a decentralization with complete mar-

kets and endogenous solvency constraints for economies with limited enforcement as in Kehoe and Levine

(1993) and Kocherlakota (1996). The outside option in their model is exclusion from intertemporal mar-

kets and implies solvency constraints that are agent and state specific, whereas our outside option without

exclusion results in simple short-sale and collateral constraints with a straightforward decentralization;

Chien and Lustig (2010) consider this type of outside option in an endowment economy.
13For a symmetric two-state Markov chain, stochastic monotonicity is equivalent to assuming that

Π(s̄, s̄) = Π(s, s) ≡ p ≥ 1/2, that is, that the autocorrelation ρ is positive, as ρ = 2p− 1 ≥ 0.
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a unique value function v which solves the Bellman equation. The value function v

is strictly increasing, strictly concave, and differentiable everywhere.14 Denoting the

multipliers on the budget constraints (2) and (3) by µ and βΠ(s, s′)µ′, respectively, and

on the short-sale constraints (4) by βΠ(s, s′)λ′, the first-order conditions are

µ = uc(c), (5)

µ′ = vw(w′, s′), (6)

µ = βRµ′ + βRλ′. (7)

We have ignored the non-negativity constraint on consumption since it is slack. The

envelope condition is vw(w, s) = µ.

2.2 Insurance is Increasing

We first show that insurance is globally monotone increasing in net worth. In particular,

the set of states that the households insure (or “hedge”) is increasing in net worth and

richer households’ net worth and consumption distribution next period dominate those

of poorer households. Richer households moreover spend more on insurance.

Proposition 1 (Increasing insurance). Let w+ > w and denote variables associated with

w+ with a subscript +. Given the current state s, ∀s ∈ S, we have: (i) The set of states

that the household insures Sh ≡ {s′ ∈ S : h(s′) > 0} is increasing in w, that is, Sh+ ⊇ Sh.

(ii) Net worth and consumption next period w′+ ≥ w′ and c′+ ≥ c′, ∀s′ ∈ S, that is, w′+
and c′+ statewise dominate and hence FOSD w′ and c′, respectively; moreover, h′+ ≥ h′,

∀s′ ∈ S, and E[h′+|s] ≥ E[h′|s]. Consumption across the insured states Sh is constant,

that is, c′ = ch, ∀s′ ∈ Sh, and ch is strictly increasing in w.

Note that Proposition 1 does not impose any additional structure on the Markov

process for income and hence does not determine which states are insured. If we fur-

ther assume that the Markov chain is stochastically monotone, then we can show that

households insure a lower interval of income realizations. Moreover, with this assumption

insurance is globally monotone increasing in both net worth w and income, that is, the

current state s. This is our first main result.
14See Theorem 9.6 and 9.8 in Stokey and Lucas with Prescott (1989). To see the differentiability,

following Lemma 1 in Benveniste and Scheinkman (1979) define v̂(ŵ, s) ≡ u(ŵ − E[R−1h′(w, s)|s]) +

βE[v(w′(w, s), s′)|s] where h′(w, s) and w′(w, s) are optimal at (w, s). Note that c(w, s) > 0 and hence

there exists a neighborhood N of w such that v̂ is a strictly concave differentiable function with the

property that v̂(w, s) = v(w, s) and v̂(ŵ, s) ≤ v(w, s) for all ŵ in N . Therefore, v is differentiable at w

with derivative uc(c(w, s)); indeed, by the Theorem of the Maximum, c is continuous in w and hence

v(w, s) is continuously differentiable.
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Proposition 2 (Increasing insurance with stochastic monotonicity). Assume that Π(s, s′)

is stochastically monotone. (i) The marginal value of net worth vw(w, s) is decreasing in

s. (ii) The household insures a lower interval of states, if at all, given w and s, that is,

Sh = {s′, . . . , s′h}; net worth next period w′, insurance h′, the interval of states insured Sh,

and insured consumption next period ch are all increasing in w and s, ∀s, s′ ∈ S. (iii) If

moreover Π(s, s′) = π(s′), ∀s, s′ ∈ S, then w(s′) = wh, ∀s′ ∈ Sh, and wh is increasing in

w, and the variance of net worth w′ and consumption c′ next period is decreasing in w.

The key to the result is that the marginal value of net worth vw(w, s) is decreasing

not just in w, as before, but also in the state s.15 Stochastic monotonicity means that

if the household is in a higher state today, holding current net worth w constant, then

the household’s income next period is higher in a FOSD sense. This reduces the cost of

insuring to a given level for each state next period, as insurance decreases with the state,

and insuring the same amount becomes less costly. The household partially consumes

the resources that are thus freed up and partially uses them to buy additional Arrow

securities, that is, purchase more insurance, allowing the household to consume more in

the insured states next period.16 Thus, richer households are better insured.

Positive persistence in the income process means that a high income realization reduces

the marginal value of net worth for two reasons: first, high current income raises current

net worth, which lowers the marginal value of net worth due to concavity; and second,

high current income implies higher expected future income, further reducing the marginal

value of net worth by the mechanism described above.17

Under the additional assumption of independent income shocks, the household ensures

a minimum level of net worth next period, which is increasing in current net worth.

Moreover, the variance of both net worth and consumption next period is decreasing in

15The proof is of technical interest as we prove that the marginal value of net worth is (weakly) de-

creasing in s by showing that the Bellman operator maps functions satisfying this property into functions

satisfying the property as well, and that the unique fixed point must satisfy the property, too.
16In state s+ > s, the household is therefore (weakly) better insured for all states next period, h′+ ≥ h′,

while at the same time the household’s insurance expenditures are lower, E[R−1h′+|s+] ≤ E[R−1h′|s]; this

is possible because the household’s insurance purchases are decreasing in s′ and stochastic monotonicity

implies that the same portfolio of Arrow securities is cheaper at s+ than at s.
17In contrast, in a production economy with technology shocks, positive persistence has two effects

which go in opposite directions: on the one hand, high current productivity implies high cash flow and

thus raises current net worth, which lowers the marginal value of net worth due to the concavity of the

value function; on the other hand, high current productivity increases the expected productivity which

means firms would like to invest more, and this effect in turn raises the marginal value of net worth.

Thus there are two competing effects when productivity shocks have positive persistence and if the second

effect is sufficiently strong, firms hedge states with high productivity.
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current net worth; there is a strong sense in which richer households are better insured.18

2.3 Insurance is Incomplete

Insurance is incomplete and some households do not insure at all:

Proposition 3 (Incomplete insurance). Assume that Π(s, s′) is stochastically monotone.

(i) At net worth w = y in state s, the household does not insure at all, i.e., λ′ > 0,

∀s′ ∈ S, and Sh = ∅. (ii) At net worth w = ȳ, the household does not insure the highest

state next period, that is, λ(s̄′) > 0 and Sh ( S, ∀s ∈ S.

At net worth y (and in state s) the household does not insure at all, which can be

interpreted as saying that “the poor can’t afford insurance.” We emphasize that all

households could buy any state-contingent claims they wanted, but households with low

net worth choose not to. Thus, it is not that poor households cannot insure, but rather

that they choose not to given their low net worth; it is in this sense that they cannot

afford to buy insurance.19 Moreover, even at net worth ȳ, the household does not engage

in complete insurance, and since insurance is increasing, the household does not insure

the highest state for any level of wealth w ≤ ȳ.

Figure 1 illustrates Propositions 2 and 3 for an economy with an independent, symmet-

ric two state Markov chain.20 The top left panel illustrates that insurance is increasing,

with the bottom left panel showing that consumption is concave in wealth and hence

richer households actually spend a larger fraction of their budget on Arrow securities to

insure future income shocks.

In our model of insurance without durable goods, insurance can be interpreted as

state-contingent savings. The properties of such state-contingent savings are similar to

18If income is lower in downturns and insurance consequently declines, then the cross sectional variation

of consumption can be countercyclical, a property that is of interest due to its asset pricing implications

(see, for example, Mankiw (1986) and Constantinides and Duffie (1996)). Storesletten, Telmer, and

Yaron (2004) find that the cross-sectional variation of labor income is countercyclical, and Guvenen,

Ozkan, and Song (2012) find that the left-skewness of idiosyncratic income shocks is countercyclical,

rather than the variance itself, in earnings data from the U.S. Social Security Administration. Rampini

(2004) provides a real business cycle model with entrepreneurs subject to moral hazard in which the

cross sectional variation of the optimal incentive compatible allocation is similarly countercyclical.
19This result mirrors the result in Rampini and Viswanathan (2010, 2013) that severely constrained

firms do not hedge. However, there is no equivalent to our main results on global monotonicity and

prudence in their work, nor do they consider general equilibrium.
20Krueger and Uhlig (2006) provide an analytical characterization of this case. However, they do not

consider more general income processes with stochastic monotonicity and thus to not obtain our main

results on the increasing and precautionary nature of insurance.
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the properties of savings noted by Friedman (1957) in his famous treatise A Theory of

the Consumption Function (page 39):

“These regressions show savings to be negative at low measured income levels,

and to be a successively larger fraction of income, the higher the measured

income. If low measured income is identified with ‘poor’ and high measured

income with ‘rich,’ it follows that the ‘poor’ are getting poorer and the ‘rich’

are getting richer. The identification of low measured income with ‘poor’ and

high measured income with ‘rich’ is justified only if measured income can be

regarded as an estimate of expected income over a lifetime or a large fraction

thereof.”

In our model, all households have the same expected income in the long run, and therefore

households that are currently poor insure less, that is, have lower state-contingent savings,

than households that are currently rich, and thus our model yields a “theory of the

insurance function” akin to Friedman’s theory of the consumption function.

How does insurance behave in the long run, given that households can accumulate

net worth? We show that the model induces a stationary distribution for household net

worth. Under the unique stationary distribution, households never insure fully. Notably,

households do not participate in insurance markets with positive probability under the

stationary distribution. This means that even households whose current net worth is

high, that are hit by a sufficiently long sequence of low income realizations, end up so

constrained again that they no longer purchase any Arrow securities, that is, stop buying

any insurance at all.21

Proposition 4 (Insurance under the stationary distribution). Assume that Π(s, s′) is

stochastically monotone. (i) There exists a unique stationary distribution of net worth.

(ii) The support of the stationary distribution is a subset of [w,wbnd] where w = y and

wbnd ≥ ȳ with equality if Π(s, s′) = π(s′), ∀s, s′ ∈ S. (iii) Under the stationary distribu-

tion, insurance is globally increasing, incomplete with probability 1, and completely absent

with strictly positive probability.

The bottom right panel of Figure 1 illustrates Proposition 4 for an independent two

state Markov chain as in the example above. This panel displays the unconditional

stationary distribution whose support is between the low income realization (y = 0.8 in

the example) and the high income realization (ȳ = 1.2). The household never insures

21In the model with incomplete markets, Schechtman and Escudero (1977) provide conditions under

which households run out of buffer stock savings with positive probability.
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the high state next period, which means the household’s net worth conditional on a high

realization is always w(s̄′) = ȳ. The household does insure low realizations of income, at

least as long as net worth is sufficiently high, so starting from net worth ȳ low income

realizations decrease the household’s net worth gradually over time; the probability mass

decreases at a rate π(s) in this range. Eventually, the household stops insuring, and

subsequent realizations result in net worth y until a high income realization lifts the

household’s net worth again.22

2.4 Insurance is Precautionary

Our second main result is that insurance is precautionary in the sense that a mean pre-

serving spread in income leads the household to increase the expenditure on insurance

when income shocks are independent over time. Remarkably, risk aversion alone is suffi-

cient for this result.

Proposition 5 (Precautionary state-contingent saving). Assume that Π(s, s′) = π(s′),

∀s′ ∈ S, and suppose π̃(s′) is a mean-preserving spread of π(s′). Then Ẽ[h̃′] ≥ E[h′],

where Ẽ is the expectation operator and h̃′ is optimal insurance given π̃(s′).

Thus, state-contingent saving is precautionary without additional assumptions about pref-

erences, whereas saving in the Bewley (1977) economy with incomplete markets is guar-

anteed to be precautionary only if preferences display prudence, that is, the marginal

utility of consumption is convex in consumption.23

Since the household increases the expenditure on insurance when risk increases, the

household must consume less today. In fact, the household ends up consuming less in

each date and state going forward:

Corollary 1 (Consumption implications of precautionary state-contingent saving). Given

the assumptions of Proposition 5 and given net worth w, precautionary state-contingent

saving implies for consumption that c̃ ≤ c, c̃′ ≤ c′, and indeed c̃(st) ≤ c(st) for any

subsequent history st and time t.

22When βR = 1, we show in the online appendix that households are unconstrained and fully insured

in the limit, but their net worth remains finite, in contrast to models with incomplete markets in which

households accumulate infinite buffer stocks to smooth consumption in the limit. Thus, the extra flexibil-

ity that state-contingent savings affords households dramatically reduces their incentives to accumulate

wealth. Insurance is incomplete and increasing even in this case, albeit only in the transition.
23An explicit comparison to the standard buffer stock savings model with incomplete markets is pro-

vided in the online appendix, which also considers the financing of human capital.
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3 Insurance with Durable Goods as Collateral

This section extends our model of household insurance to include durable goods that

provide consumption services but require financing. Durable goods can serve as collat-

eral for households’ promises to pay. Durable goods allow consumption smoothing to

some extent, but are associated with additional financing needs at the same time. The

increasing insurance results generalize to this environment to a large extent.

3.1 Financing and Insurance with Durable Goods

Consider an extension of the economy of Section 2 with two goods, (non-durable) con-

sumption c and durable goods k, which in practice comprise mainly housing. The en-

vironment, income process, and lenders are as before, but households have separable

preferences E[
∑∞

t=0 β
t{u(ct) + g(kt)}] where g(k) is strictly increasing, strictly concave,

and satisfies limk→0 gk(k) = +∞ and limk→∞ gk(k) = 0.

Durable goods depreciate at rate δ ∈ (0, 1) and the price in terms of consumption

goods is assumed to be constant and normalized to 1, ∀s ∈ S. Households can adjust

their durable goods stock freely, but there is no rental market for durable goods and

households have to purchase durable goods to consume their services. Durable goods

are also used as collateral as we discuss below. We consider durable goods price risk in

Section 5 and analyze the implications of households’ ability to rent durables as well as

purchase durables and borrow against them in Section 5.2.

Enforcement is limited as follows: households can abscond with their income and a

fraction 1 − θ of durable goods, where θ ∈ [0, 1), and cannot be excluded from markets

for state-contingent claims or durable goods.24 As before, one can show that the optimal

dynamic contract with limited enforcement can be implemented with complete markets

in one-period Arrow securities subject to collateral constraints that limit the household’s

state-contingent promises b′ in state s′ next period as follows: θk(1− δ) ≥ Rb′, ∀s′ ∈ S.25

The simplest and equivalent formulation of the household’s problem is to assume that

the household levers durable assets fully, that is, borrows b̂′ ≡ R−1θk(1 − δ), ∀s′ ∈ S,

and purchases Arrow securities in the amount h′ ≡ θk(1− δ)− Rb′, ∀s′ ∈ S. Under this

equivalent formulation, the collateral constraints on b′ reduce to short-sale constraints

on h′. Moreover, since the household borrows as much as possible against durable assets,

24One interpretation of this assumption for housing, for example, is that it takes time to foreclose on

borrowers who default and hence it is as if households abscond with some fraction of housing services.
25These collateral constraints are reminiscent of the ones in Kiyotaki and Moore (1997) but allow

state-contingent claims and can be explicitly derived in our model by extending the proof in Appendix B

to the case with durable goods.
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the household pays down ℘ ≡ 1−R−1θ(1− δ) per unit of durable assets purchased only,

where ℘ is the minimal down payment required to purchase a unit of the durable asset.

The household solves the following recursive problem by choosing (non-negative) con-

sumption c, (fully levered) durable goods k, and a portfolio of Arrow securities h′ for each

state s′ (and associated net worth w′) given the exogenous state s and the net worth w

(cum current income and durable goods net of borrowing),

v(w, s) ≡ max
c,k,h′,w′∈R2

+×R2S
u(c) + βg(k) + βE[v(w′, s′)|s] (8)

subject to the budget constraints for the current and next period, ∀s′ ∈ S,

w ≥ c+ ℘k + E[R−1h′|s], (9)

y′ + (1− θ)k(1− δ) + h′ ≥ w′, (10)

and the short-sale constraints (4), ∀s′ ∈ S.

The return function u(c) + βg(k) includes the service flow of durables purchased this

period for use next period, which is deterministic given purchases of durables this period.

This definition of the value function and net worth allows us to formulate the problem

with only one endogenous state variable, net worth w.26 Defining the multipliers as before,

the first-order conditions are (5) through (7) and

℘µ = βgk(k) + E[βµ′(1− θ)(1− δ)|s], (11)

or written as an investment Euler equation for durable goods

1 = β
gk(k)

µ

1

℘
+ E

[
β
µ′

µ

(1− θ)(1− δ)
℘

∣∣∣∣ s] . (12)

The first term on the right hand side is the service flow of the durable goods purchased this

period and consumed next period, that is, the “dividend yield” of durables, and the second

term on the right hand side is the return from the resale value of durables net of borrowing.

Since in this implementation durables are fully levered, k(1− δ)−Rb̂′ = (1− θ)k(1− δ),
and the down payment requirement ℘ is in the denominator as this is the amount of net

worth the household has to invest per unit of durable assets.

26Arguing analogously to before, there exists a unique value function which is strictly increasing,

strictly concave, and everywhere differentiable. There is no need to impose non-negativity constraints

on consumption and durable goods as these are slack given our preference assumptions.
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3.2 Increasing Insurance with Durable Goods

A key aspect of durable goods is that purchases of durables force the household to save,

as the household cannot pledge the full resale value. Indeed, if the household were able

to pledge the full resale value, that is, if θ were 1, then durable goods purchases this

period would not affect net worth next period as k would not appear in equation (10).

The choice between non-durable consumption c and durable goods k reduces to a within-

period problem given consumption expenditures ĉ which induces an indirect utility func-

tion û(ĉ) ≡ maxc,k u(c) + βg(k) subject to ĉ ≥ c+ ℘k, where û inherits the properties of

u and g. Therefore, Propositions 1 to 5 apply without change when θ = 1, that is, in-

surance is monotone increasing, incomplete, and precautionary, and is completely absent

with positive probability under the stationary distribution.

With durable goods and θ ∈ [0, 1), insurance is increasing in net worth in the sense

that households’ net worth w′ next period is strictly increasing in current net worth.

Unlike in the economy with income risk only in Section 2, we can no longer conclude that

households’ purchases of Arrow securities necessarily increase in wealth, as households

also buy more durables which increases their net worth next period.

For a stochastically monotone Markov chain we can again show that the marginal

value of net worth vw(w, s) decreases in state s. Therefore, households insure a lower set

of income realizations and, among the states they insure, insure worse income realizations

strictly more. With independence of the income process, insurance is incomplete under

the stationary distribution.

Proposition 6 (Insurance with durable goods and stochastic monotonicity). Assume

that Π(s, s′) is stochastically monotone. (i) The marginal value of net worth vw(w, s) is

decreasing in s. (ii) The household insures a lower interval of states, if at all, given w

and s, that is, Sh = {s′, . . . , s′h}, and h′ is strictly decreasing in s′ on Sh. Consumption c,

durable goods k, and net worth next period w′ are strictly increasing in w, given s; con-

sumption c is also increasing in s, given w. (iii) For w sufficiently low, h′ = 0, ∀s′ ∈ S.

(iv) If moreover Π(s, s′) = π(s′), ∀s, s′ ∈ S, then w(s′) = wh, ∀s′ ∈ Sh, and wh is strictly

increasing in w. For w ≤ w̄, the household never insures the highest state next period,

h(s̄′) = 0, where w̄ is the highest wealth level attained under the stationary distribution.

Part (iii) shows that if households’ financing needs are sufficiently strong, then financing

needs override insurance concerns. Since the budget constraint next period (10) binds in

all states and purchases of Arrow securities are limited by short-sale constraints (4), we

know that net worth w′ in state s′ next period is bounded below, namely,

w′ ≥ y′ + (1− θ)k(1− δ) > y′,
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for all states s′, due to households’ limited ability to promise. But this means that

households must be collateral constrained against all states s′ next period if households’

current net worth w is sufficiently low, since the marginal value of net worth next period

must be bounded above.

Households’ limited ability to credibly promise repayment means that households

cannot pledge future income and hence households’ future net worth has to be at least

future labor income. Moreover durable goods purchases require some down payment per

unit of capital from the household and hence implicitly force households to shift additional

net worth to the next period. Both these aspects imply that if current household net worth

is relatively low, households shift resources to the present to the extent possible, that is,

borrow as much as possible against durable goods.

Panel A of Figure 2 illustrates Proposition 6 in the case of an independent symmetric

two state Markov process for income. The consumption of both non-durables and durables

are concave in household net worth, consistent with one of the basic stylized facts of the

empirical consumption literature. Insurance is increasing in net worth; indeed, for low

net worth the household does not insure at all. The household insures the low state only

once net worth reaches a relatively high level, about the level of the high income in the

example. This is due to the financing needs for the purchases of durable goods, which

force the household to save. At the bottom of the stationary distribution (where w(s′)

intersects the 45-degree line), the household does not insure at all. This level of net worth

is also considerably above the low income. The financing needs for durable goods reduce

insurance. The behavior of the households in our model with durables is reminiscent of

the “hand-to-mouth” households in Kaplan, Violante, and Weidner (2014), who find that

as much as a third or more of U.S. households live effectively hand-to-mouth; two thirds

of these households are “wealthy hand-to-mouth” with sizable illiquid wealth, primarily

in the form of housing, but little or no liquid financial assets, as in our model.

Panel B of Figure 2 illustrates the effect of collateralizability by considering the ex-

ample from Panel A except with collateralizability θ = 0.6 instead of 0.8. The effects are

striking. The household reduces consumption of non-durables and durables for given net

worth, which is intuitive as a given durable goods purchase now requires more net worth

(not shown in the figure). Moreover, the household drastically reduces insurance and does

not insure at all until a much higher level of net worth is reached and even then, insures

much less. Essentially, the household is forced to save so much to finance its durable

goods purchases that it chooses not to insure. At the same time, the stationary distribu-

tion of households’ net worth shifts to the right. This comparative statics result provides

an interesting perspective on the effects of financial development, which we interpret as
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an increase in collateralizability. Financial development that allows households to lever

durable goods more, results in lower net worth accumulation, which all else equal would

leave households more susceptible to shocks. Thus, by enabling higher leverage, financial

development renders households’ insurance concerns more pertinent.

Panel C of Figure 2 illustrates the effect of persistence on insurance by considering the

example from Panel A except with a Markov process for income with autocorrelation 0.5

instead of 0. When income is persistent, the household consumes more non-durables and

durables in the high state than in the low state, holding net worth constant (not shown

in the figure). Moreover, the household insures the low state more, in particular when

the current state is high. Thus an increase in persistence increases insurance. That said,

the household saves less for the high state, in particular when the current state is low.

4 Equilibrium and Effect of Collateral on Insurance

We now consider the general equilibrium in the economy with durable assets and id-

iosyncratic risk in which the interest rate R is determined to clear the market for state-

contingent claims. The market clearing condition for collateralized claims can be inter-

preted as the balance sheet of a representative insurance company. The insurer’s assets are

collateralized loans and its liabilities are a diversified portfolio of insurance claims. Hence,

our third main result is that the model provides a theory of insurance companies showing

that the asset-and-liability structure of insurers is a reflection of the intertemporal nature

of insurance. Our fourth main result shows that, when collateral is scarce, that is, θ is

below some threshold, then βR < 1 in equilibrium, as we previously simply assumed.

The interest rate affects not just the cost of collateralized loans, that is, the supply of

collateralized claims, but also the price of state-contingent claims, that is, the demand

for collateralized claims. When collateral is scarce, state-contingent claims are in short

supply, lowering the equilibrium interest rate, which is equivalent to collateralized assets

trading at a premium as in Holmström and Tirole (1998, 2011).27 Collateral scarcity

results in less insurance in equilibrium and more consumption and wealth inequality. In

contrast, when the collateralizability is sufficiently high, βR = 1 and households are fully

insured.

27In contrast to their model, in our model collateral may be scarce in equilibrium even if the risk in

the economy is purely idiosyncratic.
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4.1 Stationary Equilibrium and Theory of Insurance Firms

A stationary equilibrium is an allocation x(z) ≡ {c(z), k(z), h′(z), w′(z)} for each house-

hold given z ≡ {w, s}, an interest rate R, and a stationary distribution F (z) such that

x(z) solves each household’s problem stated in (8)-(10) and (4), given z, and the market

for state-contingent promises clears, that is,∫
z

E[b′(z)|s]dF (z) = 0, (13)

or, equivalently, the supply of collateralized claims equals the demand for state-contingent

claims h′(z) ∫
z

θk(z)(1− δ)dF (z) =

∫
z

E[h′(z)|s]dF (z). (14)

State-contingent promises are in zero net supply which is reflected in (13) where we use

the law of large numbers and the assumption that risk is idiosyncratic and independent

across agents.28 Using the equivalent formulation in which households lever durables fully,

that is, borrow b̂′ ≡ R−1θk(1− δ), and purchase Arrow securities h′ ≡ θk(1− δ)−Rb′, we

can rewrite (13) as (14); this equation states that the aggregate supply of collateralized

claims equals the aggregate demand for Arrow securities.

In terms of institutions, we can interpret the market clearing condition as a compet-

itive representative insurance firm with collateralized loans as assets and a diversified

portfolio of insurance claims as liabilities. The competitive insurer is owned by house-

holds, makes zero profits, and is perfectly diversified and hence prices the contingent

claims at their risk-neutral price given the equilibrium interest rate R. Insurers are thus

diversified financial intermediaries akin to the ones in Diamond (1984). We emphasize

that the insurance sector’s asset-and-liability structure itself reflects the intertemporal

nature of insurance, our third main result.

For simplicity, we restrict attention to the case in which households’ income is in-

dependent over time. To simplify notation, we define the aggregate quantities W ≡∫
z
w(z)dF (z), C ≡

∫
z
c(z)dF (z), K ≡

∫
z
k(z)dF (z), and H ′ ≡

∫
z
h′(z)dF (z). In a sta-

tionary equilibrium, we can take the cross-sectional expectation of the budget constraints

for the current period and the expectation of the budget constraints for the next period,

∀s′ ∈ S, (9) and (10), and write these as

W = C + ℘K + E[R−1H ′], (15)

E[y′] + (1− θ)K(1− δ) + E[H ′] = W. (16)

28The expression
∫
z
· dF (z) is a shorthand for

∑
s∈S

∫
w
· π∗(s)dF (w|s) where π∗(s) is the stationary

distribution associated with the transition matrix Π(s, s′).

18



Using the market clearing condition (14), θK(1− δ) = E[H ′], (15) and (16) imply that

W = C +K = E[y′] +K(1− δ). (17)

In a stationary equilibrium, aggregate net worth equals aggregate consumption plus the

value of the aggregate durables stock and also equals the aggregate income plus the

aggregate value of the depreciated durables stock. Rewriting the second equality we

conclude that the aggregate income equals aggregate consumption plus the aggregate

investment required to maintain the durables stock, that is,

E[y′] = C + δK. (18)

This is the resource constraint of the economy.

4.2 Full Insurance with Abundant Collateral

When the aggregate supply of collateralized assets is sufficiently large, a stationary equi-

librium obtains in which βR = 1. When βR = 1, the first-order condition for h′, (7),

implies that µ = µ′ + λ′ ≥ µ′, ∀s′ ∈ S, and thus in a stationary equilibrium µ = µ′ = µ∗;

the marginal value of net worth is constant and equal for all households, that is, there

is full insurance. Equations (5), (6), and (11) imply that consumption c∗, net worth w∗,

and durable goods k∗ are constant as well. Using the notation R∗ ≡ β−1 and r∗ = R∗−1,

the investment Euler equation (12) simplifies to

r∗ + δ =
gk(k

∗)

uc(c∗)
, (19)

implying that the user cost of durable goods equals the marginal rate of substitution

between durables and consumption. Using ℘∗ ≡ 1−R∗−1θ(1− δ), the budget constraints

for the current and the next period, ∀s′ ∈ S, (9) and (10), can be written as

w∗ = c∗ + ℘∗k∗ + E[R∗−1h′∗], (20)

y′ + (1− θ)k∗(1− δ) + h′∗ = w∗, ∀s′ ∈ S. (21)

Equations (17) and (18) reduce to w∗ = c∗ + k∗ = E[y′] + k∗(1− δ) and E[y′] = c∗ + δk∗,

respectively. This last equation and (19) determine c∗ and k∗ uniquely.

So far we have ignored the restriction that h′∗ ≥ 0, ∀s′ ∈ S. Using (17) to substitute

for w∗ in (21) we obtain h′∗ = θk∗(1− δ)− (y′−E[y′]) ≥ 0, ∀s′ ∈ S, which is satisfied for

all s′ ∈ S as long as

θ ≥ θ̄ ≡ y(s̄′)− E[y′]

k∗(1− δ)
≥ 0,
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where y(s̄′) is the income in the highest state. As long as pledgeability exceeds this lower

bound, which is strictly positive if income is not deterministic, collateral is not scarce and

there is full insurance in the steady state and βR = 1.29 In contrast, in the analogous

model with exogenously incomplete markets à la Huggett (1993) and Aiyagari (1994) the

interest rate is below the rate of time preference in any equilibrium and the full-insurance

allocation cannot be attained. Further, we can conclude the following in our model:

Proposition 7 (Equilibrium interest rate). In equilibrium βR ≤ 1 with equality iff θ ≥ θ̄.

We characterize the equilibrium when collateral is scarce below.

4.3 Effect of Collateral Scarcity on Interest Rate and Insurance

When the aggregate supply of collateralized assets is insufficient, that is, θ < θ̄, collateral

is scarce and the interest rate that clears the market for contingent claims satisfies βR < 1,

as Proposition 7 implies. The intuition is that if βR equalled 1, the households would

fully insure, but then the demand for collateralized assets would strictly exceed the supply.

Appendix C shows that there exists a unique stationary equilibrium in this case.

We demonstrate the effect of the scarcity of collateral on the equilibrium interest rate

and insurance in Figure 3 by varying the collateralizability θ from 0 to values above θ̄. The

top left of Panel A shows that the lower the collateralizability, the lower the interest rate,

and that when the collateralizability exceeds θ̄, βR = 1. The top right of Panel A shows

that the aggregate demand for insurance claims E[H ′] in equilibrium increases with the

collateralizability; when θ = 0 the interest rate has to be sufficiently low so households

do not demand insurance claims; the demand for collateralized claims increases with

the collateralizability as the return on insurance claims increases.30 Since the supply

of collateralized claims equals the demand in equilibrium, the supply of collateralized

claims is also strictly increasing in the collateralizability. The bottom left of Panel A

displays the aggregate durable goods stock; lower collateralizability reduces the interest

rate and reduces the user cost of capital, increasing investment; when θ ≥ θ̄, investment

is first-best efficient, in contrast to Aiyagari’s (1994) result in a model with exogenously

incomplete markets where investment is higher in any equilibrium.

The reduced equilibrium purchases of insurance claims mean that households are

29Note that it is possible that θ̄ ≥ 1, in which case the condition is violated ∀θ ∈ [0, 1).
30The demand for collateralized claims is strictly increasing even when the collateralizability exceeds

θ̄, but this is simply due to the fact that households start to purchase non-contingent claims in our

implementation, effectively reducing leverage.
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less well insured, resulting in a welfare loss, as the bottom right of Panel A shows.31

Reduced insurance also implies more inequality, as Panel B illustrates. The top part

shows the net worth distribution associated with various levels of collateralizability. When

collateralizability exceeds θ̄, households are fully insured and the net worth distribution

is degenerate at w∗. The lower the collateralizability, the less well insured households

are and the more the wealth distribution fans out. Indeed, the standard deviation of net

worth and consumption increase as collateralizability goes down, as the bottom part of

Panel B illustrates. Collateral scarcity due to lower collateralizability reduces insurance

and increases inequality.

Remarkably, the scarcity of collateral can lower the equilibrium interest rate so much

that the frictionless Jorgensonian user cost of durable goods is negative. By rewriting

the investment Euler equation (12), we define the user cost of durable goods (given net

worth w) as

u(w) ≡ r + δ + E

[
βR

λ′

µ

]
(1− θ)(1− δ) = βR

gk(k)

µ
,

that is, the user cost of durable assets to a household with net worth w has two compo-

nents. The first is the Jorgensonian user cost that would prevail in a frictionless economy,

u ≡ r+ δ. The second component is the premium on internal funds, which is the internal

funds (1− θ)(1− δ) that have to be put up by the household times the expectation of the

scaled multiplier on the collateral or, equivalently, short-sales constraint λ′. The marginal

rate of substitution on the right hand side must be strictly positive, but the Jorgensonian

user cost r+δ could be negative in equilibrium, and indeed is negative in our example for

θ sufficiently low (see the top left of Panel A), because the premium on internal funds for

households is positive as they are not fully insured and βR < 1 in such an equilibrium.

Consider the economy with zero collateralizability, that is, θ = 0, and denote the

equilibrium (shadow) interest rate by R(0). At this interest rate, any household must

choose not to buy any insurance claims, so 1 ≥ β µ
′

µ
R(0) with equality for at most one

state s′; therefore, 1 > E[β µ
′

µ
R(0)]. Consider now households’ demand for non-contingent

claims; at R(0) that demand is zero and there exists a (shadow) interest rate R̄ > R(0)

for which 1 ≥ E[β µ
′

µ
R̄] with equality for some households. The interest rate that reduces

the demand for insurance claims to zero for all households is therefore strictly lower

than the interest rate that reduces the demand for non-contingent claims to zero. In

this sense, the demand for state-contingent collateralized claims exceeds the demand

for non-contingent collateralized claims at θ = 0. At the same time, state-contingent

collateralized claims conserve collateral and a finite supply of collateralized claims, θ ≥ θ̄,

31We measure the welfare loss as the equivalent reduction in expected income (in percent) in a deter-

ministic economy that achieves the same welfare.
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suffices to accommodate the demand for such claims that allow households to fully insure,

in contrast to incomplete markets economies.

Observe that the economy with durable goods nests the economy with income risk

only which we considered in Section 2 by setting δ = 1.32 Further, we can characterize

the equilibrium interest rate in the economy with income risk only as the limit of the

economy with durable goods when δ → 1.33

In sum, the general equilibrium version of our model provides several novel insights in

addition to endogenizing the assumption that βR < 1 in the rest of the paper: collateral

can be scarce even with purely idiosyncratic risk; collateral scarcity reduces the interest

rate and insurance, increasing inequality; and a finite amount of collateral is sufficient

to achieve the first best, with βR = 1, when markets are complete except for collateral

constraints. Moreover, the market clearing condition can be interpreted as the balance

sheet of a representative insurance company, a diversified financial intermediary with

collateralized loans as assets and a diversified portfolio of insurance claims as liabilities.

5 Durable Goods Price Risk Management

In this section we consider households’ hedging of durable goods price risk in addition to

income risk. Moreover, we study households’ choice between owning and renting durable

goods and its interaction with the hedging of price risk. We show that financially con-

strained households choose not to hedge durable goods price risk. Moreover, households’

ability to rent durables leads them to hedge due to the high implied leverage and indeed

can affect the sign of the hedging demand.

32When δ = 1, the budget constraints for the next period (10) reduce to (3) and, since the down

payment ℘ = 1 and defining ĉ ≡ c+k, using this change of notation the budget constraint for the current

period (9) reduces to (2). Finally, defining û(ĉ) ≡ maxc,k u(c) + βg(k) subject to ĉ ≥ c + k as before,

where ĉ is the consumption expenditure, the objective (8) is identical to (1) except for the change of

notation. The indirect utility function û(·) inherits the properties of u(·) and g(·).
33When δ → 1, the supply of collateralized assets goes to zero and there is no insurance. The equilib-

rium interest rate therefore has to be such that the first-order condition for h′, (7), is satisfied ∀s′ ∈ S
without insurance, and has to be just satisfied for a household with current income ȳ who considers

buying claims for the worst state next period, y, that is, ûc(ȳ) = βRûc(y), implying that the equilibrium

interest rate is R =
(
β
ûc(y)

ûc(ȳ)

)−1

= β−1 ûc(ȳ)
ûc(y) < β−1. In our example, u(c) = c1−γ

1−γ , g(k) = g k
1−γ

1−γ , and the

indirect utility function takes the form û(ĉ) = κ ĉ
1−γ

1−γ where κ is a constant; given the parameters in the

numerical illustration, r ≈ −88%.
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5.1 Risk Management of Durable Goods Price Risk

We now consider an economy with durable goods price risk. Suppose the price of durable

goods q(s) is stochastic, where the state s describes the joint evolution of income y(s)

and q(s), and the economy is otherwise the same as in Section 3.34 For simplicity, we take

the price process q(s) and the interest rate R as exogenously given here. As before, we

assume without loss of generality that the household levers durable assets fully, that is,

borrows b̂′ ≡ R−1θq′k(1− δ) against state s′, ∀s′ ∈ S, and purchases Arrow securities h′,

∀s′ ∈ S. The collateral constraints again reduce to short-sale constraints. Moreover, since

the household borrows as much as possible against durable assets, the household pays

down ℘(s) ≡ q(s) − R−1θE[q′|s](1 − δ) per unit of durable assets purchased only. We

assume that q(s) and ℘(s) are increasing in s, although some of our results obtain more

generally.

The household’s problem, formulated recursively, is to choose (non-negative) con-

sumption c, (fully levered) durable goods k, and a portfolio of Arrow securities h′ for

each state s′ (and associated net worth w′) given the exogenous state s and the net

worth w (cum current income and durable goods net of borrowing), to maximize (8)

subject to the budget constraints for the current and next period, ∀s′ ∈ S,

w ≥ c+ ℘(s)k + E[R−1h′|s], (22)

y′ + (1− θ)q′k(1− δ) + h′ ≥ w′, (23)

and the short-sale constraints (4), ∀s′ ∈ S.

Defining the multipliers as before, the first-order conditions are (5) through (7) and

℘(s)µ = βgk(k) + E[βµ′(1− θ)q′(1− δ)|s]. (24)

The durable goods price affects the down payment ℘(s) in the current period and the

resale value of durable goods next period. If the household cannot pledge the full resale

value of durables, that is, if θ < 1, then durable goods purchases force the household to

implicitly save. Moreover, the household is then exposed to the price risk of durables

in two ways: first, the resale value of durable goods affects the household’s net worth

next period, and second, the durable goods price affects the down payment which in turn

affects the marginal value of net worth. If the household can pledge the full resale value

of durables, that is, if θ = 1, the second term on the right hand side of (24) is zero, and

the first-order condition simplifies to ℘(s)µ = βgk(k). In this case, the durable goods

price only affects the household’s problem through the down payment. We are able to

34In Section 3, the price of durable goods is constant and normalized to 1.
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characterize the solution explicitly in the case of isoelastic preferences with coefficient

of relative risk aversion γ ≤ 1: household risk management is increasing. Specifically,

we show that the economy is equivalent to an economy with income risk and preference

shocks. Remarkably, with logarithmic preferences, households do not hedge the durable

goods price risk at all, but may partially insure income risk. With γ < 1, higher durable

goods prices, and hence higher down payments, reduce the marginal value of net worth

as the substitution effect dominates the income effect. And vice versa, lower house prices

amount to investment opportunities and raise the marginal value of net worth.

Proposition 8 (Durable goods price risk management). Suppose θ = 1 and preferences

satisfy u(c) = c1−γ/(1− γ) and g(k) = gk1−γ/(1− γ) where γ > 0 and g > 0. (i) If γ = 1

(logarithmic preferences), then v(w, s) = (1 + βg)v̂(w, s) + vϕ(s), where v̂(w, s) solves

the income risk management problem (without durable goods) in equations (1) through

(4) and vϕ(s) is an exogenous function defined in the proof. Household risk management

is increasing in the sense of Propositions 1 and 2 and the household does not hedge

durable goods price risk at all. (ii) For γ 6= 1, the problem is equivalent to an income

insurance problem in an economy with preference shocks where û(ĉ, s) = φ(s)u(ĉ) with ĉ

and φ(s) defined in the proof. Household risk management is increasing in the sense of

Proposition 1. Moreover, if Π(s, s′) is stochastically monotone, ℘(s) is increasing in s,

and γ < 1, then the marginal value of net worth vw(w, s) is decreasing in s, the household

hedges a lower set of states, and w′, h′, and Sh are all increasing in w and s, ∀s, s′ ∈ S.

More generally, when θ < 1, a drop in the durable goods price lowers the household’s

net worth and hence raises the marginal utility of net worth, and, when γ < 1, the low

durable goods price may further raise the marginal utility of net worth. Thus, households

likely hedge low durable goods prices in this case. In contrast, when γ > 1, a drop in the

durable goods price has two opposing effects, on the one hand lowering net worth and

on the other hand raising the marginal utility of net worth due to the price effect. This

additional effect reduces the household’s hedging demand. Under plausible parameteriza-

tions, the direct effect on net worth arguably dominates nonetheless, but this is of course

a quantitative question.35

Figure 4 illustrates the effect of durable goods price risk on the household’s consump-

tion and insurance problem. We consider an example in which income and the price of

durables are perfectly correlated, that is, there are two states only, one with high in-

35This result is reminiscent of the results in the consumption based asset pricing literature that show

that investors’ hedging demand in the presence of expected return variation depends in a similar way on

the coefficient of relative risk aversion γ; investors hedge states with low expected returns when γ > 1

and otherwise hedge high expected returns (see, for example, Campbell (1996)).
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come and a high durable goods price and one with low income and a low durable goods

price,36 and assume that the Markov process is independent across time.37 For given

net worth, when the durable goods price is currently low, the household consumes more

non-durables and durables and hedges less. The household hedges less because the higher

durable goods purchases force the household to save more resulting in a higher level of

net worth next period. At the bottom of the stationary distribution, and for levels of

net worth below that, the household does not hedge at all. This implies that sufficiently

constrained households choose not to hedge the price risk of durable goods.

5.2 Risk Management and the Rent vs. Buy Decision

In the analysis so far we have not considered households’ ability to rent durable goods.

If there were a frictionless rental market, ownership of a durable good and the use of its

services would be separable. The need to collateralize claims might still limit risk sharing,

but tenure choice would not affect households’ portfolio choice. Moreover, households’

demand for housing services would not induce a substantial financing need in that case.

We consider a rental market that is not frictionless. Renting durable goods is possi-

ble, albeit costly, but relaxes collateral constraints as landlords or lessors can more easily

repossess rented durables.38 Sufficiently constrained households choose to rent, which

affects their risk management or portfolio choice. Because renting housing is costly,

households will continue to have a strong incentive to own housing and hence face consid-

erable financing needs for housing. We are able to characterize the interaction between

risk management and home ownership since in our model markets are complete, although

subject to collateral constraints. In contrast the literature typically studies the interaction

of the risk of home ownership and portfolio choice under the assumption that markets

are incomplete. Sinai and Souleles (2005) argue that both home ownership and renting

are risky when households do not have access to complete markets.39

The household can purchase durable goods as before as well as rent them. We denote

the total amount of durable goods of the household by k, owned durables by ko and rented

durables by kl, where k = ko + kl. Given the current price of durables q(s) in state s, the

36We analyze the case where income and durable goods price processes are independent of each other

in the next subsection.
37Persistence of the Markov process has quantitative but not qualitative effects on the solution.
38Eisfeldt and Rampini (2009) and Rampini and Viswanathan (2013) analyze a similar market for

rented capital in a corporate finance context.
39Our model may also provide a useful framework to study household interest rate risk management,

which Campbell and Cocco (2003) model as the choice of mortgage type, specifically the choice between

adjustable rate mortgages (ARMs) and fixed rate mortgages.
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user cost of rented capital is ul(s) ≡ rq(s)−(E[q′|s]−q(s))+E[q′|s](δ+m) where m is the

landlord’s or lessor’s monitoring cost per unit of durable asset, which we assume is paid

in terms of durable goods at the end of the period.40 Because of limited enforcement, the

household has to pay the rental fee up front, in present value terms, that is, R−1ul(s).

The household’s problem with renting, formulated recursively, is to choose (non-

negative) consumption c, (fully levered) owned and rented durable goods ko and kl and a

portfolio of Arrow securities h′ for each state s′ (and associated net worth w′) given the

exogenous state s and the net worth w (cum current income and owned durable goods

net of borrowing), to maximize (8) subject to the budget constraints for the current and

next period, ∀s′ ∈ S,

w ≥ c+ ℘(s)ko +R−1ul(s)kl + E[R−1h′|s], (25)

y′ + (1− θ)q′ko(1− δ) + h′ ≥ w′, (26)

the non-negativity constraints on owned and rented durables,

ko, kl ≥ 0, (27)

and the short-sale constraints (4), ∀s′ ∈ S.

Defining the multipliers as before, the first-order conditions are (5) through (7) and

℘(s)µ ≥ βgk(k) + E[βµ′(1− θ)q′(1− δ)|s], (28)

R−1ul(s)µ ≥ βgk(k). (29)

Using (28) and (29) one can show that a necessary condition for the household to rent

some durables is that the down payment required to purchase durables exceeds the rental

cost, that is, ℘(s)−R−1ul(s) > 0, as renting is otherwise dominated. Moreover, when the

household is severely constrained, the household rents all its durable assets; the intuition

is that renting durables allows the household to borrow more. Such households also

typically do not hedge as noted throughout. There is an interesting interaction between

the rent vs. buy decision and hedging. Since renting allows higher leverage, renters’ net

worth becomes rather volatile, and hence renters with sufficient net worth may partially

hedge until they reach net worth levels where they start to own their durables. Households

with higher net worth on the other hand own some or all of their durables, and may hedge

income and durable goods price risk. This implies that household risk management may

no longer be monotone in household net worth.

40Note that if the price of durable goods were constant and normalized to 1, then ul = r+ δ+m which

is the sum of Jorgenson’s (1963) frictionless user cost r + δ plus the monitoring cost m. The additional

term adjusts the user cost for the expected capital gain or loss E[q′|s]− q(s).
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Interestingly, renters’ hedging demand for durable goods price risk may have the

opposite sign from that of households who own most of their durables. That said, since

renting is endogenous and more constrained households rent, the demand from renters

for hedging claims which pay off in high durable goods price states may be low.

Figure 5 illustrates risk management when households can rent and buy durables,

say housing. We assume that the income and price processes are independent of each

other and independent across time. This allows us to separate hedging of income and

price risk. The bottom right panel shows that households rent when their net worth is

low but substitute to owning houses as net worth increases. Rented houses are smaller

than owned houses because renters are low net worth households. Households rent and

buy smaller houses, and consume fewer non-durables, when the price of housing is high.

Moreover, households start to own housing at higher levels of net worth, so rent longer,

when the price of housing is high, as high house prices imply larger down payments and

hence households are more constrained all else equal, that is, for given net worth.

The top left panel shows households’ risk management which displays the by now

familiar properties with two noteworthy changes: since renting allows higher leverage,

households are more inclined to hedge when they rent; indeed, for moderate levels of net

worth households are hedging but switch back to not hedging at all at higher levels of

net worth. Thus, hedging is no longer monotone increasing in net worth. Moreover, the

house price affects the level of hedging as households purchase larger houses when the

price is low forcing them to save more and in turn reducing their incentives to save, and

hedge, using financial assets.

The other main additional insight regards the sign of the hedging demand: households,

in particular renters, hedge the high house price state. Note that when income and the

price of housing are independent, there are four states next period that households could

hedge. As before, households primarily hedge the low income state, except for households

with very high net worth. More interestingly, households hedge the high price state, that

is, buy more claims for the state with low income and high house prices than for the state

with low income and low house prices; to see this in the figure, note that the dashed lines

(associated with high house prices) are above the corresponding solid lines (associated

with low house prices). Here it is important to keep in mind that the example features

isoelastic preferences with γ = 2. Renting has implied collateralization one and hence the

fact that renters hedge the high house price state is related to the results in Proposition 8

for γ > 1; high house prices increase the marginal value of net worth, all else equal. For

owners there is an additional effect, that is, all else is not equal: owners’ home equity

(1 − θ)q′k(1 − δ) is worth more when house prices are high. This effect reduces the
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marginal utility of net worth when prices are high, but in the example the first effect

dominates and even home owners hedge the high price state somewhat more.

Our results on durable goods price risk management lead to two important conclusions.

First, financial constraints may be at the heart of the absence of hedging of house prices.

Second, the sign of the hedging demand depends on households’ preferences, their ability

to borrow, and on whether households rent or buy.

6 Evidence on Insurance and Net Worth

In this section we briefly survey evidence of what we consider a stylized fact, namely that

poor (and more financially constrained) households are less well insured than richer (and

less financially constrained) households. Indeed, we think this is part of a much broader

pattern applying to entrepreneurial households and firms as well.

Among U.S. households, health insurance coverage varies considerably with income

and age according to data from the U.S. Census Bureau.41 The percentage of people

without health insurance in the U.S. decreases from 25% of people with income less

than $25,000 to 21% for people with income between $25,000 and $50,000, and further

decreases to 15% of people with income between $50,000 and $75,000 and finally decreases

to 8% of people with income exceeding $75,000. Similarly, by age, the fraction of adults

without health insurance decreases from 28% and 26% for age groups 18-24 and 25-34,

respectively, to 18% and 14% for age groups 35-44 and 45-64, respectively, and to less

than 2% for age group 65 and up. Brown and Finkelstein (2007) report that participation

in long-term care insurance by individuals aged 60 and over also varies substantially by

wealth in U.S. data, increasing from about 3% for the bottom wealth quartile to about

6%, 11%, and 20% for the second, third, and top quartile, respectively.42 Inkmann, Lopes,

and Michaelides (2011) find that annuity market participation among U.K. households

with at least one retired person increases substantially with financial wealth, from less

than 1% in the bottom 5% to almost 20% in the top 5% of the wealth distribution. Krebs,

Kuhn, and Wright (2015) find that the median young married household with children

insures only between 10% and 40% of the net present value loss associated with the death

of an adult family member, whereas older households are close to fully insured. Koijen,

Van Nieuwerburgh, and Yogo (2016) propose a new methodology to measure households’

overall insurance given a portfolio of insurance products and find substantial welfare

41Table 6 of the U.S. Census Bureau’s Report on Income, Poverty, and Health Insurance Coverage in

the United States: 2007 provides data on people without health insurance coverage by income and age.
42See their Table 1 which provides data on private long-term care insurance ownership rates among

individuals aged 60 and over from the 2000 Health and Retirement Survey.
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losses due to the limited and heterogenous extent of insurance of health and mortality

risk; moreover, they find that wealthier households have stronger bequest motives.43

Clearly, the extent to which households are insured varies substantially with house-

holds’ income and wealth and, assuming that younger individuals and households are more

financially constrained, also seems to vary with financial constraints. This cross-sectional

evidence is consistent with the view that there is an important connection between insur-

ance and households’ financial constraints. That said, there are certainly other reasons

why insurance participation varies with income, such as crowding out of private insurance

by public programs, as stressed, for example, by Brown and Finkelstein (2008), financial

literacy that varies with income, or fixed costs of obtaining insurance. Next we turn

to data documenting the relation between insurance coverage and income using within-

household variation, which is consistent with our theory and challenges explanations based

on financial literacy or fixed costs.

Fang and Kung (2012) use panel data for males from the Health and Retirement Sur-

vey, a representative longitudinal survey of older Americans conducted every two years.

They find that income shocks are one of the important determinants of whether individ-

uals maintain or lapse life insurance coverage, along with changes in health and marital

status. The probability of buying life insurance increases with income and importantly the

probability of lapsing coverage decreases with income; “individuals who experience nega-

tive income shocks are more likely to lapse all coverage.” Therefore, the within-household

variation in insurance coverage is consistent with the predictions of our model.44

Relatedly, there is evidence on insurance by farmers in developing economies suggest-

ing that financial constraints reduce insurance substantially.45 Among farmers in rural

43Browne and Hoyt (2000) find that flood insurance coverage, both in terms of the number of policies

per capita and the amount of coverage per capita, is positively correlated with disposable personal income

per capita using U.S. state level data.
44Hendel and Lizzeri (2003) find that life insurance contracts that are more front-loaded result in

less lapsation and have a lower present value of premia over the period of coverage. They consider a

two-period model with one-sided commitment à la Harris and Holmström (1982) in which life-insurance

buyers face reclassification risk for the second period but are not able to commit to a contract; they show

that optimal contracts are front-loaded which is costly because of the absence of credit markets in their

model. Handel, Hendel, and Whinston (2015) find that reclassification risk is quantitatively significant.
45For firms, Rampini, Sufi, and Viswanathan (2014) find a strong positive correlation between net

worth and risk management both in the cross section and within firms over time in data on fuel price

risk management by U.S. airlines. Moreover, fuel price hedging drops remarkably as airlines approach

distress and recovers only slowly after distress. Relatedly, the corporate finance literature documents a

strong size pattern in risk management, when measured by participation of firms in derivatives markets,

among U.S. corporations overall. Thus, the basic pattern for corporate insurance seems to be the same

as for households: better financed firms are better hedged than poorly financed firms.
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India, Giné, Townsend, and Vickery (2008) find that participation in rainfall insurance

programs increases in wealth and decreases with measures of borrowing constraints. Cole,

Giné, Tobacman, Topalova, Townsend, and Vickery (2013) provide evidence on the im-

portance of credit constraints for the adoption of rainfall insurance using randomized field

experiments in rural India. Farmers who are randomly surprised with a positive liquidity

shock are much more likely to buy insurance. Moreover, the authors report that the

most frequently stated reason for not purchasing insurance is “insufficient funds to buy

insurance.”46 In a randomized control trial in Kenya, Casaburi and Willis (2018) find

that the take-up rate for crop insurance rises dramatically when farmers are offered to

pay for insurance at the harvest rather than up front, with the largest difference among

poorer farmers. They conclude that these heterogeneous treatment effects suggest that

liquidity constraints mattered, and provide evidence that “they ran deeper than simply

not having the cash to pay the premium.” They point out that enforcing the ex-post

payment of premia may be a challenge, which is at the heart of the trade-off we study.

Farmers might of course use other risk sharing mechanisms, including informal ones.

To overcome the limitation of analyzing specific risk sharing mechanisms in isolation,

Townsend (1994) studies data on Indian farmers’ household consumption directly in a

seminal paper, and finds that, while the full insurance model provides a remarkably good

benchmark, “[t]here is evidence that the landless are less well insured than their village

neighbors in one of the three villages.” That is, there is “a hint of a pattern by land

class. Specifically, the landless and small farmers in Aurepalle and the small and medium

farmers in Shirapur seem more vulnerable.” In the spirit of Townsend (1994), Blundell,

Pistaferri, and Preston (2008) study the extent of insurance by analyzing the income and

consumption distribution for U.S. households jointly. They find “some partial insurance of

permanent shocks, especially for the college educated and those near retirement. [They]

find full insurance of transitory shocks except among poor households.” Overall, we

conclude that there is a basic pattern in insurance: richer households are better insured

than poorer households.

That said, much of the existing evidence is on the extensive margin of insurance –

that is, whether households do or do not have a particular type of coverage – and mostly

cross-sectional in nature with limited panel dimension. The main empirical prediction of

46Experimental evidence moreover shows that the availability of insurance in turn affects production

decisions: Cole, Giné, and Vickery (2017) find that insurance provision increases investment in higher-

return but riskier cash crops among Indian farmers; Karlan, Osei, Osei-Akoto, and Udry (2014) find

that insurance leads to significantly larger agricultural investment and riskier production choices among

Ghanaian farmers; Cai, Chen, Fang, and Zhou (2015) find that hog insurance increases investment in

hogs among Chinese farmers.
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our theory is that insurance increases in net worth not just at the extensive margin, but

also importantly at the intensive margin, both across and within households. To date,

evidence on the intensive margin of insurance is limited. Our model provides guidance

for empirical work on within-household variation of the intensive margin of insurance in

panel data on households.

7 Conclusion

An explicit analysis of household risk management is provided in which households have

access to complete markets subject to collateral constraints. With limited enforcement,

insurance may be better viewed as state-contingent savings and hence insurance has an

intertemporal aspect. We argue that the intertemporal nature of insurance is at the

heart of the dynamics of insurance demand at the micro level and the asset-and-liability

structure of the insurance sector at the aggregate level.

At the micro level, our first main result is the optimality of globally monotone increas-

ing insurance, that is, insurance that increases in household net worth and income, under

quite general conditions. Our second main result is that insurance is precautionary in the

sense that an increase in uncertainty increases insurance. Remarkably, risk aversion alone

is sufficient for this result and assumptions on prudence, that is, the third derivative of

the utility function, are not required, in contrast to the classic results on precautionary

savings with risk-free assets. The main empirical predictions of our theory at the micro

level – that insurance increases in net worth at both the intensive and extensive margin,

across and within households – is consistent with the basic patterns documented in the

existing literature and recent experimental evidence. That said, the theory’s predictions

may serve as a guide for empirical work on the within-household dynamics of insurance

at the intensive and extensive margin, on which there is limited evidence to date.

At the aggregate level, our third main result is a theory of insurers as financial inter-

mediaries with collateralized loans as assets and a diversified portfolio of insurance claims

as liabilities; insurers, and the insurance sector overall, have positive assets because of the

intertemporal nature of insurance. Our fourth main result is that in equilibrium, when

collateral is scarce, the interest rate is below households’ rate of time preference, limiting

households’ insurance and resulting in wealth inequality.

In our theory, households’ intertemporal financing needs and collateral constraints

explain limited participation in insurance markets. Proposals to introduce new markets

providing household risk management tools are hence unlikely to be successful in our view,

as many households may not use such markets even if they existed. That household risk
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management may require collateral in the form of margins has been recognized, but not

explicitly analyzed. For example, Athanasoulis and Shiller (2000) write that “[m]argin

requirements might deal with this [collection] problem, but only for people who have

sufficient assets as margin. We will disregard these kinds of ... problems.” Our work,

in contrast, suggests that these concerns are key to why household risk management is

limited and to understanding the basic patterns in insurance.
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Appendix A: Proofs

Proof of Proposition 1. Part (i): Suppose ∃ŝ′ ∈ Sh such that ŝ′ 6∈ Sh+. Using (7),
(6), the envelope condition, and strict concavity of the value function we have

βRvw(w(ŝ′), ŝ′) = vw(w, s) > vw(w+, s) ≥ βRvw(w+(ŝ′), ŝ′),

implying, again by strict concavity of the value function, that w(ŝ′) < w+(ŝ′). But w(ŝ′) =
y(ŝ′) + h(ŝ′) > y(ŝ′) = w+(ŝ′), a contradiction.

Part (ii): Note that w′+ ≥ w′, ∀s′ ∈ S, implies that y′ + h′+ = w′+ ≥ w′ = y′ + h′,
that is, h′+ ≥ h′, ∀s′ ∈ S, and hence E[h′+|s] ≥ E[h′|s], and, using the envelope con-
dition, uc(c

′
+) = vw(w′+, s

′) ≤ vw(w′, s′) = uc(c
′), implying that c′+ ≥ c′. To see that

w′+ ≥ w′, ∀s′ ∈ S, suppose not, that is, suppose ∃ŝ′ ∈ S, such that w+(ŝ′) < w(ŝ′), i.e.,
h+(ŝ′) < h(ŝ′). Proceeding as in part (i), since h(ŝ′) > 0, βRvw(w(ŝ′), ŝ′) = vw(w, s) >
vw(w+, s) ≥ βRvw(w+(ŝ′), ŝ′), implying that w+(ŝ′) > w(ŝ′), a contradiction. Finally,
for s′, ŝ′ ∈ Sh, using (7), (6), and the envelope condition for next period, we have
βRuc(c(s

′)) = vw(w, s) = βRuc(c(ŝ
′)), that is, c(s′) = c(ŝ′) ≡ ch. By strict concavity

of the value and utility function, ch is strictly increasing in w when Sh is non-empty. 2

Proof of Proposition 2. Part (i) & (ii) Define the operator T as

Tv(w, s) ≡ max
c,h′,w′∈R+×R2S

u(c) + βE[v(w′, s′)|s]

subject to equations (2) through (4). We show that if v is a weakly concave function in
w and has the property that ∀s, s+, s+ > s,

v(ŵ, s+)− v(w, s+)

ŵ − w
≤ v(ŵ, s)− v(w, s)

ŵ − w
, ∀ŵ, w,

then Tv inherits this property. Since the set S of bounded, continuous, and weakly
concave functions which satisfy the property is closed under the sup norm, the fixed
point has the property, too.

Recall that for any concave function, the left and right derivatives exist and denote
these by v−w (w, s) and v+

w (w, s), respectively; by concavity, v−w (w, s) ≥ v+
w (w, s). For

v ∈ S, v−w (w, s′+) ≤ v−w (w, s′) and v+
w (w, s′+) ≤ v+

w (w, s′). Let the set So of bounded,
continuous, strictly concave, and differentiable functions which satisfy the property that
∀s′, s′+, s′+ > s′, vw(w, s′+) ≤ vw(w, s′), ∀w. The set So is not a closed set under the sup
norm, but So ⊂ S. We show that T (S) ⊂ So ⊂ S and use Corollary 1 to Theorem 3.2 of
Stokey, Lucas with Prescott (1989) to conclude that v = Tv ∈ So.

Using an argument similar to the proof of Theorem 9.8 in Stokey, Lucas with Prescott
(1989), one can show that Tv(w, s) is strictly concave and using Benveniste and Scheinkman
(1979) Tv(w, s) is differentiable (see footnote 14). Suppose v ∈ S. For given w and s,
suppose ∃s′+ > s′ such that h(s′+) > h(s′). Note that the first-order condition with
respect to h′ can be written as Tvw(w, s) ≥ βRv−w (w′, s′) if h′ = 0 and Tvw(w, s) ∈
[βRv+

w (w′, s′), βRv−w (w′, s′)] if h′ > 0. Then βRv−w (w(s′+), s′+) ≥ vw(w, s) ≥ βRv−w (w(s′), s′),
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implying, given the assumed property, that w(s′+) ≤ w(s′). But w(s′+) = y(s′+) +h(s′+) >
y(s′) + h(s′) = w(s′), a contradiction. Therefore, h(s′+) ≤ h(s′), ∀s′+ > s′, that is, the
household insures lower income realizations (weakly) more. Hence, the household insures
a lower set of states, if at all.

Denote the set of states that the household insures by Sh ≡ {s′ ∈ S : h(s′) > 0}. Take
s+ > s and let Sh+ be associated with s+ (and similarly for other variables). Suppose
∃s+ > s, such that Tvw(w, s+) > Tvw(w, s) and, using the envelope condition, c+ < c.
Since h′ is decreasing in s′, stochastic monotonicity implies that E[h′|s] ≥ E[h′|s+] and
hence (2) implies that the solution at s, {c, h′, w′}, is feasible at s+. Since we assumed
that c+ < c, there must exist an ŝ′ ∈ S such that h+(ŝ′) > h(ŝ′) since otherwise the
household would not spend all its net worth. Using the first-order condition stated above
and the envelope condition, we have

Tvw(w, s+) ≤ βRv−w (w+(ŝ′), ŝ′) ≤ βRv+
w (w(ŝ′), ŝ′) ≤ βRv+

w (w(ŝ′), s′) ≤ Tvw(w, s),

a contradiction. Thus Tv inherits the property that ∀s, s+, s+ > s, Tvw(w, s+) ≤
Tvw(w, s); moreover, Tv(w, s) is a strictly concave differentiable function, and hence
T (S) ⊂ So ⊂ S.

As a corollary of Proposition 1, w′, h′, Sh, and ch are increasing in w given s, ∀s′ ∈ S.
To see that Sh is increasing in s given w, take s+ > s and suppose instead that ∃ŝ′
such that h(ŝ′) > 0 but h+(ŝ′) = 0. Then βRvw(y(ŝ′), ŝ′) ≤ vw(w, s+) ≤ vw(w, s) =
βRvw(w(ŝ′), ŝ′) which implies w(ŝ′) ≤ y(ŝ′), contradicting w(ŝ′) = y(ŝ′) + h(ŝ′) > y(ŝ′).
Thus, any state that the household insures at s, the household insures at s+ > s, that
is, Sh is increasing in s. If the household insures s′ at s+ but not at s, then clearly
w′+ > w′ and h′+ > h′. If the household insures s′ at both s+ and s, then βRvw(w′+, s

′) =
vw(w, s+) ≤ vw(w, s) = βRvw(w′, s′) and hence w′+ ≥ w′ and h′+ ≥ h′. Thus, w′ and h′

are increasing in s. Moreover, since w′ is increasing in s, the envelope condition for next
period vw(w′, s′) = uc(c

′) implies that c′, and ch, are increasing in s as well.
Part (iii): Take w+ > w and denote with a subscript + the optimal policy associated

with w+. Let w̃′ ≡ w′−E[w′], w̃h ≡ wh−E[w′], (and ỹ′ = y′−E[w′],) and analogously for
w̃′+, w̃h+, and ỹ′+. We need to show that var(w̃′+) ≤ var(w̃′). Note that w̃′ = max{w̃h, ỹ′}
and analogously for w̃′+. If w̃h+ = w̃h, then w̃′+ = w̃′ and the result is obvious. Otherwise,
noting that E[w′+] − E[w′] ≤ wh+ − wh, we have w̃h+ > w̃h, and hence E[w′+] > E[w′].
Moreover, w̃′+ < w̃′, ∀s′ ∈ S such that w̃′ > 0 and E[w̃′+|w̃′+ > 0] < E[w̃′|w̃′ > 0]. We

construct a random variable ˆ̃w′+ such that w̃′ is a mean preserving spread of ˆ̃w′+ and
ˆ̃w′+ is in turn a mean preserving spread of w̃′+. Let ˆ̃w′+ ≡ max{w̃′+, 0}, ∀s′ ∈ S such

that w̃′ > 0 and ˆ̃w′+ ≡ max{ ˆ̃wh, ỹ
′} otherwise, where ˆ̃wh such that E[ ˆ̃w′+] = 0. Note

that ∃ ˆ̃wh ∈ (w̃h, w̃h+] since E[w̃′|w̃′ > 0] > E[w̃′+|w̃′+ > 0] = E[ ˆ̃w′|w̃′ > 0] and thus

E[w̃′+|w̃′+ ≤ 0] = E[ ˆ̃w′+|w̃′ ≤ 0] > E[w̃′|w̃′ ≤ 0]. Since | ˆ̃w′+| ≤ |w̃′|, ∀s′ ∈ S, with strict

inequality for some s′ ∈ S, var( ˆ̃w′+) < var(w̃′). Moreover, E[ ˆ̃w′+ − w̃′+] = 0 and ˆ̃w′+
is a mean preserving spread of w̃′+, that is, var(w̃′+) < var( ˆ̃w′+) < var(w̃′). Moreover,
consumption c is monotone and strictly increasing in net worth w and, defining c̃′, c̃h, c̃

′
+,

and c̃h+ analogously, we can proceed in a similar fashion for consumption. 2
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Proof of Proposition 3. Part (i): Using (6) and the envelope condition, equation (7)
evaluated at w = y and s = s implies that βRλ(s′) = vw(y, s) − βRvw(w(s′), s′) ≥
(1 − βR)vw(y, s) > 0 where we used the fact that w(s′) ≥ y. But then Part (ii) of
Proposition 2 implies that Sh = ∅.

Part (ii): At net worth w = ȳ, using (7) and the envelope condition, we have
vw(ȳ, s) = βRvw(w(s̄′), s̄′) + βRλ(s̄′) which implies that λ(s̄′) > 0 since w(s̄′) ≥ ȳ and
hence, by strict concavity of v and the fact that vw(w, s) is decreasing in s (see Part (i)
of Proposition 2), βRλ(s̄′) = vw(ȳ, s)− βRvw(w(s̄′), s̄′) ≥ (1− βR)vw(ȳ, s) > 0. 2

Proof of Proposition 4. Part (i): We first argue that levels of net worth below y and
above wbnd(s), ∀s ∈ S, defined below, are transient. Using (3) which holds with equality
and (4) we have w′ ≥ y′ ≥ y and hence levels of net worth below y are transient, ∀s ∈ S.
Using part (ii) of Proposition 3, ∀w ≤ ȳ, λ(s̄′) > 0, ∀s ∈ S. Suppose Sh = ∅ at (ȳ, s̄),
then since insurance is increasing, Sh = ∅, ∀(w, s) with w ≤ ȳ. Therefore, once w ≤ ȳ,
net worth never exceeds ȳ again. Suppose Sh 6= ∅ at (w̄, s̄); then vw(ȳ, s̄) = βRvw(w′, s′),
∀s′ ∈ Sh, and let wbnd(s

′) solve this equation ∀s′ ∈ Sh. Moreover, define wbnd(s
′) = y(s′),

∀s′ ∈ S \Sh. By part (i) of Proposition 2, vw(w′, s′) is decreasing in s′ and hence wbnd(s
′)

is decreasing in s′, ∀s′ ∈ Sh, and wbnd(s
′) = maxs′∈Sh

wbnd(s
′). Note that for any s ∈ S,

∀w ≤ wbnd(s), w
′ ≤ wbnd(s

′), ∀s′ ∈ S. To see this, suppose instead that ∃ŝ′ such that
w′ > wbnd(ŝ

′). If w ≤ ȳ, both w and s are smaller than or equal ȳ and s̄, respectively,
and the fact that w′ is increasing in w and s (see part (ii) of Proposition 2) implies
w′ ≤ wbnd(ŝ

′), a contradiction. Therefore, w > ȳ and wbnd(s) > y(s); moreover,

vw(wbnd(s), s) ≤ vw(w, s) = βRvw(w′, ŝ′) + βRλ(ŝ′) < βRvw(wbnd(ŝ
′), ŝ′)

≤ vw(ȳ, s̄) = βRvw(wbnd(s), s) < vw(wbnd(s), s),

a contradiction. Thus, for any s ∈ S, once w ≤ wbnd(s), w
′ ≤ wbnd(s

′), ∀s′ ∈ S, and let
wbnd = max{ȳ, wbnd(s′)}.

To show that net worth levels above wbnd are transient, suppose net worth w(st) at
time t in state st is such that w(st) > wbnd. Any path which reaches a state st+n against
which the household is constrained at time t+n results in a household net worth w(st+n) =
y(st+n) ≤ ȳ and indeed net worth is bounded above by wbnd from then onwards. Consider
a path along which the household is never constrained; since vw(w, s) = βRvw(w′, s′)
along such a path, ∃n < ∞, such that vw(wt+n, st+n) = (βR)−nvw(wt, st) > vw(ȳ, st+n)
and hence again wt+n < ȳ at time t+ n and net worth is less than wbnd thereafter.

To prove that the existence of a unique stationary distribution, define Z∗ as the set of
(w, s) such that either (w, s) = (y(s), s), any s ∈ S, or for any ŝ ∈ S, s ∈ S, (w, s) solves
vw(y(ŝ), ŝ) = (βR)nvw(w, s), for n ≥ 1, and w ≥ y(s). Let Z ≡ ∪s∈S([y, wbnd(s)] × {s}).
For any z = (w, s) ∈ Z, vw(w, s) ≥ βRvw(y(s̄) = ȳ, s̄), as the household does not insure
the highest state. So ∀z ∈ Z, P (z, (ȳ, s̄)) > 0, where P (z, z′) is the induced transition
function, and hence (ȳ, s̄) is a consequent ∀z ∈ Z. Next we show that (ȳ, s̄) is recurrent,
and indeed that all z ∈ Z∗ are recurrent, whereas all z ∈ Z \ Z∗ are transient. For
(ȳ, s̄) pick s ∈ S and solve for vw(ȳ, s̄) = (βR)nvw(w, s) for each n ≥ 1 such that
w ≥ y(s). Each such (w, s) ∈ Z∗ is a consequent of (ȳ, s̄) and so is (y(s), s), ∀s ∈ S,
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since the household stops insuring state s in state s after a finite n. Hence for each ŝ,
(y(ŝ), ŝ), ∀s ≤ ŝ, solve for vw(ŷ, ŝ) = (βR)nvw(w, s), for each n ≥ 1, such that w ≥
y(s). Each such (w, s) ∈ Z∗ is a consequent of (y(s), s) and hence of (ȳ, s̄). Hence,
∀z ∈ Z∗, P ((ȳ, s̄), z) > 0, that is, all z ∈ Z∗ are consequent for (ȳ, s̄). Therefore,
(ȳ, s̄) is recurrent and so are all z ∈ Z∗. In contrast, for any z ∈ Z \ Z∗, (ȳ, s̄) is a
consequent of z but not vice versa, that is, P ((ȳ, s̄), z) = 0 for z ∈ Z \ Z∗, and such z
are transient. Since P (z, (ȳ, s̄)) ≥ mins∈S Π(s, s̄) > 0, Theorem 11.2 in Stokey and Lucas
with Prescott (1989) implies that there exists a unique invariant distribution. For each
z ∈ Z∗, define εz = minẑ∈Z∗ P (ẑ, z) and note that ε(ȳ,s̄) = mins∈S Π(s, s̄) > 0. Hence,
let ε =

∑
z∈Z∗ εz ≥ ε(ȳ,s̄) > 0. Theorem 11.4 in Stokey and Lucas with Prescott (1989)

implies that there exists a unique ergodic set with no cyclically moving subsets and the
rate of convergence is geometric.

Part (ii): See the proof of part (i) for a proof that net worth levels below y and above
wbnd are transient. When Π(s, s′) = π(s′), ∀s, s′ ∈ S, denote the net worth at the upper
bound of the stationary distribution by wbnd and using (7) and the envelope condition,
we have vw(wbnd) = βRvw(wbnd) + βRλ(s̄′), implying that λ(s̄′) > 0 and hence since w′ is
weakly increasing in w and s′, wbnd = w(s̄′) = ȳ.

Part (iii): Insurance is increasing by Proposition 1. Insurance is incomplete with
probability 1 since the stationary distribution of net worth is bounded above by wbnd and
at wbnd(s) for s ∈ Sh we have wbnd(s) > y(s) and

vw(wbnd(s), s) = βRvw(w(s̄′), s̄′) + βRλ(s̄′)

≤ βRvw(ȳ, s̄′) + βRλ(s̄′) = (βR)2vw(wbnd(s), s) + βRλ(s̄′)

implying that λ(s̄′) > 0, and at wbnd(s) for s ∈ S \ Sh we have wbnd(s) = y(s) and

vw(ȳ, s̄) ≤ vw(wbnd(s), s) = βRvw(w(s̄′), s̄′) + βRλ(s̄′) ≤ βRvw(ȳ, s̄′) + βRλ(s̄′)

and again λ(s̄′) > 0. Therefore, since insurance is increasing, λ(s̄′) > 0 for all w ≤ wbnd(s),
∀s ∈ S. By Part (i) of Proposition 3, insurance is completely absent at w = y and s; by
continuity, ∃ε > 0 such that for w > w with |w − w| < ε, vw(w, s) > βRvw(y, s), which
means that the household does not insure at all in this neighborhood. Clearly, w = ȳ
has positive probability under the stationary distribution since household income ȳ has
positive probability under the stationary distribution of income. If the household does
not insure s′ at ȳ, then w has strictly positive probability. Consider instead a path along
which the household continues to insure the lowest income realization the following pe-
riod, then ∃n < ∞ such that vw(wt+n, st+n) = (βR)−nvw(ȳ, s̄) > vw(y, st+n) and hence
wt+n < y, which is not possible. So the household must stop insuring the lowest state
after a finite sequence of lowest income realizations, that is, the household does not insure
at all with positive probability under the stationary distribution. 2

Proof of Proposition 5. Let S̄ be the set of bounded, continuous, and weakly concave
functions and S̄o be the set of bounded, continuous, strictly concave, and differentiable
functions. Using a proof similar to that in Proposition 2 and defining the operator T
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analogously, we conclude that T (S̄) ⊂ S̄o ⊂ S̄ so v ∈ S̄o, and similarly for ṽ (using T̃ ),
which denotes the value function (and operator, respectively) associated with π̃(s′).

Consider some v̂ ∈ S̄o. We show that if T̃ nv̂w(w) ≥ T nv̂w(w), then T̃ n+1v̂w(w) ≥
T n+1v̂w(w), which in turn implies that the value functions v and ṽ satisfy ṽw(w) ≥ vw(w),
∀w, too. Suppose that T̃ nv̂w(w) ≥ T nv̂w(w), but that Ẽ[h̃′] < E[h′], which, from the
budget constraint, implies that c̃ > c. Moreover, Sh 6= ∅ and using the first-order condition
with respect to h and the envelope condition we have

βRuc(ch) = βRT nv̂w(wh) = T n+1v̂w(w) = uc(c)

> uc(c̃) = T̃ n+1v̂w(w) ≥ βRT̃ nv̂w(w̃h) = βRuc(c̃h),

and therefore c̃h > ch. Further, T̃ nv̂w(w̃h) = uc(c̃h) < uc(ch) = T nv̂w(wh), which in turns
implies that w̃h > wh. Then, since max{·, 0} is convex,

E[h′] = E[max{wh − y′, 0}] < E[max{w̃h − y′, 0}] ≤ Ẽ[max{w̃h − y′, 0}] = Ẽ[h̃′],

a contradiction. Hence, Ẽ[h̃′] ≥ E[h′], which implies that c̃ ≤ c and (T̃ n+1v̂)w(w) =
uc(c̃) ≥ uc(c) = (T n+1v̂)w(w), so the value function T̃ n+1v̂ and T n+1v̂ satisfy the prop-
erty, too. 2

Proof of Corollary 1. The fact that c̃ ≤ c is an immediate consequence of Proposition 5.
To see that c̃′ ≤ c′, suppose not, that is, suppose ∃ŝ′ such that c̃(ŝ′) > c(ŝ′), which can
only be true if w̃(ŝ′) > w(ŝ′) and therefore h̃(ŝ′) > 0. But then

βRuc(c̃(ŝ
′)) = uc(c̃) ≥ uc(c) ≥ βRuc(c(ŝ

′)),

which in turn implies that c̃(ŝ′) ≤ c(ŝ′), a contradiction.
Proceeding analogously, suppose ∃ŝ′′ such that c̃(ŝ′′) > c(ŝ′′), which can only be true

if w̃(ŝ′′) > w(ŝ′′) and therefore h̃(ŝ′′) > 0. But then

βRuc(c̃(ŝ
′′)) = uc(c̃(s

′)) ≥ uc(c(s
′)) ≥ βRuc(c(ŝ

′′)),

where s′ is the state preceding ŝ′′ and where we used the fact that c̃′ ≤ c′, ∀s′ ∈ S. This
in turn implies that c̃(ŝ′′) ≤ c(ŝ′′), a contradiction. By induction, c̃(st) ≤ c(st) for any
subsequent history st and time t. 2

Proof of Proposition 6. Part (i): The proof is in a similar spirit to the Proof of
Part (i) of Proposition 2. We show that if the properties that v(w, s) is increasing in s
and vw(w, s) is decreasing in s are satisfied by v next period, then Tv satisfies these same
properties this period, and conclude that the fixed point satisfies these properties as well.
Moreover, as before, we observe that if the properties are satisfied next period, then the
household insures a lower set of states and h′ is decreasing in s′.

Now suppose that ∃s+ > s, such that Tvw(w, s+) > Tvw(w, s), implying by the
envelope condition that c+ < c. From the budget constraint(2) we have

c+ + ℘k+ +
∑
s′∈S

Π(s+, s
′)h′+ = w = c+ ℘k +

∑
s′∈S

Π(s, s′)h′,
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and given stochastic monotonicity and the fact that h′ is decreasing in s′ we have∑
s′∈S Π(s+, s

′)h′ ≤
∑

s′∈S Π(s, s′)h′, which implies that x = {c, k, h′} is feasible at s+

and, since v(w, s) is increasing in w and s, Tv(w, s+) ≥ Tv(w, s).
Suppose k+ ≤ k. There must exist an ŝ′ such that w+(ŝ′) > w(ŝ′), since otherwise

consumption of goods and durables and the net worth next period are all lower at s+

than s, contradicting the optimality of x+ since x is feasible. But then h(ŝ) > 0 and
therefore βRµ+(ŝ′) = µ+ > µ ≥ βRµ(ŝ′) implying w+(ŝ′) < w(ŝ′), a contradiction.

Now suppose k+ > k. For s′ ∈ Sh ∩ Sh+, βµ
′/µ = R−1 = βµ′+/µ+. For s′ ∈ S \

Sh ∩ S \ Sh+, βµ
′/µ > βµ′+/µ+. For s′ ∈ Sh ∩ S \ Sh+, βµ

′/µ = R−1 ≥ βµ′+/µ+. Finally
Sh ∩ S \ Sh+ = ∅, since for such s′ we would have βRµ′+ = µ+ > µ ≥ βRµ′, implying
w′+ < w′, whereas w′+ = y′ + (1 − θ)k+(1 − δ) + h′+ > y′ + (1 − θ)k(1 − δ) = w′, a
contradiction. Recalling that R−1 ≥ βµ′/µ and that the right hand side is decreasing in
s′, the Euler equation for durables (12) implies

1 = β
gk(k+)

µ+

1

℘
+

[ ∑
s′∈Sh+

Π(s+, s
′)R−1 +

∑
s′∈S\Sh+

Π(s+, s
′)β

µ′+
µ+

]
(1− θ)(1− δ)

℘

< β
gk(k)

µ

1

℘
+

[ ∑
s′∈Sh

Π(s+, s
′)R−1 +

∑
s′∈S\Sh

Π(s+, s
′)β

µ′

µ

]
(1− θ)(1− δ)

℘

≤ β
gk(k)

µ

1

℘
+

[ ∑
s′∈Sh

Π(s, s′)R−1 +
∑

s′∈S\Sh

Π(s, s′)β
µ′

µ

]
(1− θ)(1− δ)

℘
= 1,

a contradiction.
Part (ii): Arguing analogously to Part (i) of Proposition 2, since the property in

Part (i) above is satisfied, the household insures a lower set of states and w′ and h′ is
decreasing in s′ since for two states s′+ > s′ which are insured we have vw(w′+, s

′
+) =

vw(w′, s′) ≥ vw(w′, s′+), that is, w′ ≥ w′+, and h′ > h′+ as y′ < y′+.
Using the envelope condition and (5) we have vw(w, s) = uc(c), and given the strict

concavity of the value function, if w+ > w, vw(w+, s) < vw(w, s) and hence c+ > c, that
is, c is strictly increasing in w, given s, and since vw(w, s) is decreasing in s, c is increasing
in s.

To see that k is strictly increasing in w given s, take w+ > w and note that by strict
concavity of v, µ+ < µ. Suppose that k+ ≤ k, then gk(k) ≤ gk(k+). Rewriting the Euler
equation for durable goods purchases (12) we have

1 = β
gk(k)

µ

1

℘
+
∑
s′∈Sh

Π(s, s′)R−1 (1− θ)(1− δ)
℘

+
∑

s′∈S\Sh

Π(s, s′)β
µ′

µ

(1− θ)(1− δ)
℘

.

Assume, without loss of generality, that Sh = Sh+. Since gk(k+)/µ+ > gk(k)/µ, it must
be the case that ∃ŝ′ ∈ S \ Sh such that µ+(ŝ′)/µ+ < µ(ŝ′)/µ and hence µ+(ŝ′) < µ(ŝ′),
that is, w+(ŝ′) > w(ŝ′). But since ŝ′ ∈ S \ Sh, w+(ŝ′) = y(ŝ′) + (1 − θ)k+(1 − δ) ≤
y(ŝ′) + (1− θ)k(1− δ) = w(ŝ′), we have a contradiction.

To see that w′ is strictly increasing in w given s, ∀s′ ∈ S, assume again w.l.o.g.
that Sh = Sh+. On Sh, vw(w, s) = βRvw(w′, s′) and hence w′+ > w′. On S \ Sh, w′+ =
y′ + (1− θ)k+(1− δ) > y′ + (1− θ)k(1− δ) = w′.
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Part (iii): The budget constraint (9) implies that w ≥ c; thus, as w goes to 0,
c goes to 0 and using the envelope condition vw(w, s) = uc(c) goes to +∞. Since w′ ≥
y′+(1−θ)k(1−δ) > y′ ≥ y and vw(y, s′) is bounded for all s′, vw(w′, s′) < vw(y, s′) < +∞,
and hence for sufficiently low w, λ′ > 0, ∀s′ ∈ S.

Part (iv): If Π(s, s′) = π(s′), ∀s, s′, then for any two states s′+ > s′ that are insured
we have vw(w′+) = vw(w′), that is, w′ = w′+ ≡ wh.

Since w̄ is the highest wealth level that is attained under the (unique) stationary
distribution, we have at w̄ that vw(w̄) = βRvw(w̄′) + βRλ(s̄′), so λ(s̄′) > 0. Now sup-
pose ∃ŵ < w̄ such that the household insures all states at ŵ implying that vw(ŵ) =
βRvw(ŵ(s′)), ∀s′ ∈ S, that is, net worth next period must be lower than net worth
this period in all states. But then there would have to exist a w− < ŵ such that
w−(s̄′) > ŵ(s̄′) (since otherwise w̄ could not be attained from below ŵ), which implies
that ŵ(s̄′) < w−(s̄′) = y(s̄′)+(1−θ)k−(1−δ)+h−(s̄′), so h−(s̄′) > 0. This in turn implies
that vw(w−) = βRvw(w−(s̄′)), that is, vw(w−) < vw(ŵ), a contradiction. 2

Proof of Proposition 7. If βR > 1, then µ > µ′ by (7). Hence µ > E[µ′] and the
supermartingale theorem (see Chamberlain and Rothschild (1984) for example) implies
that there is a limit µ∞ with E[µ∞] = 0 and since µ∞ must be weakly positive, µ∞ = 0.
From the envelope condition µ∞ = uc(c

∞) = 0 and thus consumption is infinite, which
violates the resource constraint (18).

If βR = 1, the argument above implies that we have full insurance but then in gen-
eral equilibrium there must be sufficient collateralizability to ensure that these insurance
claims can be issued, that is, θ ≥ θ̄.

Suppose that θ < θ̄ but nevertheless βR = 1. Then households are fully insured and
(19) holds. Using (20) and the expectation of (21) we obtain

E[y′] = c∗ + δk∗ + (1−R∗−1) (θk∗(1− δ)− E[h′∗]) . (30)

Subtracting (21) at s̄′ from (21) at s′ yields h∗(s′) = y(s̄′) − y(s′) + h∗(s̄′) and E[h′∗] =
y(s̄′)−E[y′]+h∗(s̄′) ≥ y(s̄′)−E[y′]. At θ = θ̄, h∗(s̄′) = 0, so indexing variables associated
with θ and θ̄ we conclude E[h′∗(θ)] ≥ E[h′∗(θ̄)]. Moreover, market clearing at θ̄ implies
that θ̄k∗(θ̄)(1− δ) = E[h′∗(θ̄)]. Suppose there is (weakly) positive excess supply of collat-
eralized claims at θ, that is, θk∗(θ)(1− δ) ≥ E[h′∗(θ)]; combined with market clearing at
θ̄, this implies that k∗(θ) > k∗(θ̄), and, using (19), c∗(θ) > c∗(θ̄). But substituting into
(30) yields a contradiction. Thus, if θ < θ̄, then βR = 1 implies strictly positive excess
demand. 2

Proof of Proposition 8. Part (i): When θ = 1, the investment Euler equation for
durable goods (24) simplifies to

℘(s)µ = βgk(k), (31)

which in the case of logarithmic utility further simplifies to k = (βg/℘(s))c. Define the
total expenditure on consumption and durable goods as ĉ = c + ℘(s)k = (1 + βg)c.
Substituting for c and k in the return function we have

û(ĉ, s) = u(c) + βg(k) = (1 + βg)u(ĉ) + ϕ(s),
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where ϕ(s) = −(1+βg) log(1+βg)+βg log(βg)−βg log(℘(s)). The problem with durable
goods can then be written as an income insurance problem with preference shocks

v(w, s) = max
ĉ,h′,w′∈R+×R2S

û(ĉ, s) + βE[v(w′, s′)|s] (32)

subject to
w ≥ ĉ+ E[R−1h′|s], (33)

(3), and (4).
Let v̂(w, s) solve the following income insurance problem without preference shocks

v̂(w, s) = max
ĉ,h′,w′∈R+×R2S

u(ĉ) + βE[v̂(w′, s′)|s]

subject to (33), (3), and (4). This is in fact the problem considered in Section 3. Not-
ing that the preference shock component of utility ϕ(s) is separable and defining vϕ(s)
recursively as

vϕ(s) ≡ ϕ(s) + βE[vϕ(s′)|s],

we have v(w, s) = (1 +βg)v̂(w, s) + vϕ(s) as can be verified by substituting into equation
(32).

Part (ii): With isoelastic preferences, (31) simplifies to k = (βg/℘(s))1/γc. De-
fine the total expenditure on consumption and durable goods as ĉ = c + ℘(s)k =
(1 + ℘(s)(βg/℘(s))1/γ)c. Substituting for c and k in the return function we have

û(ĉ, s) = u(c) + βg(k) = φ(s)u(ĉ),

where φ(s) = (1+(βg)1/γ℘(s)(γ−1)/γ)γ. The proof of Proposition 1 applies without change.
Suppose Π(s, s′) is stochastically monotone and ℘(s) is increasing in s. To prove that

vw(w, s) is decreasing in s when γ < 1, first observe that φ(s) is decreasing in s in that
case (whereas it is increasing in s if γ > 1). We can now proceed as in the proof of the
first part of Part (ii) of Proposition 2, that is, we assume that the property is satisfied
by v(·) next period and then show that it has to be satisfied by Tv(·) in the current
period as well. As before, note that if the property is satisfied next period, the household
hedges a lower set of states and h′ decreases in s′. Suppose the opposite, that is, suppose
∃s+ > s, such that Tvw(w, s+) > Tvw(w, s), implying by the envelope condition that
φ(s+)u(ĉ+) = µ+ > µ = φ(s)u(ĉ) and therefore u(ĉ+) > φ(s)/φ(s+)u(ĉ) ≥ u(ĉ), which
further implies that ĉ+ < ĉ. Since h′ is decreasing in s′, E[R−1h′|s] ≤ E[R−1h′|s+] and
{ĉ, h′, w′} is feasible at s+. Since ĉ+ < ĉ, ∃ŝ′ such that w+(ŝ′) > w(ŝ′) since otherwise
{ĉ+, h

′
+, w

′
+} would achieve lower utility than switching to {ĉ, h′, w′}, contradicting opti-

mality. But then y(ŝ′) + h+(ŝ′) = w+(ŝ′) > w(ŝ′) = y(ŝ′) + h(ŝ′) and h+(ŝ′) > h(ŝ′) ≥ 0,
so βRµ+(w+(ŝ′), ŝ′) = µ+ > µ ≥ βR(w(ŝ′), ŝ′), implying w+(ŝ′) < w(ŝ′), a contradiction.
Therefore vw(w, s) is decreasing in s, and the rest of the proposition obtains from the
proof of Part (ii) of Proposition 2 without change. 2
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Appendix B: Equivalence of Economies with Limited

Enforcement and Collateral Constraints

This appendix shows the equivalence of the optimal dynamic contract with limited en-
forcement without exclusion and an economy with one-period state-contingent claims
subject to collateral constraints. For simplicity we consider the case without durable
goods. The household’s problem with limited enforcement at time τ ≥ 0 given net
worth w(sτ ), which we denote Pτ (w(sτ )), is to choose a sequence of consumption choices
and net payments {c(st), p(st)}t≥τ where st ≡ {s0, . . . , st}, to maximize

Eτ

[ ∞∑
t=τ

β(t−τ)u(ct)

]
, (34)

subject to

w(sτ ) ≥ c(sτ ) + p(sτ ), (35)

y(st) ≥ c(st) + p(st), ∀t > τ, (36)

the lender’s participation constraint

Eτ

[ ∞∑
t=τ

R−(t−τ)pt

]
≥ 0, (37)

the limited enforcement constraint

Eτ ′

[ ∞∑
t=τ ′

β(t−τ ′)u(ct)

]
≥ Eτ ′

[ ∞∑
t=τ ′

β(t−τ ′)u(ĉt)

]
, ∀τ ′ ≥ τ, ∀{ĉ(st)}∞t=τ ′ , (38)

where {ĉ(st)}∞t=τ ′ together with {p̂(st)}∞t=τ ′ solve Pτ ′(ŵ(sτ
′
)) with ŵ(sτ

′
) = y(sτ

′
). We

say a sequence of net payments is implementable if it satisfies the lender’s participation
constraint and the limited enforcement constraints.

Proposition 9 (Equivalence of limited enforcement and collateral constraints). (i) Any
sequence of net payments {p(st)}∞t=τ is implementable in problem Pτ (w(sτ )) iff

0 ≥ Eτ ′

[ ∞∑
t=τ ′

R−(t−τ ′)pt

]
, ∀τ ′ > τ, (39)

that is, the present value of the remaining payments is never positive. (ii) The set of
sequences of net payments satisfying (39) is equivalent to the set of sequences of one-period
state-contingent claims {h(st)}∞t=τ that satisfy the short-sale constraints

h(st) ≥ 0, ∀t > τ. (40)
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Proof of Proposition 9. Part (i): (⇒) Suppose not, that is, suppose that {p(st)}∞t=τ is
such that (39) is violated for some sτ

′
, τ ′ > τ, that is

Eτ ′

[ ∞∑
t=τ ′

R−(t−τ ′)pt

]
> 0.

W.l.o.g. let τ ′ = τ + 1. The household could default in state sτ+1 at time τ + 1 and
issue new payments {p̂(st)}∞t=τ+1 such that p̂(st) = p(st), t > τ + 1, and p̂(sτ+1) =
−Eτ+1

[∑∞
t=τ+2R

−(t−(τ+1))p̂t
]
, and hence by construction Eτ+1

[∑∞
t=τ+1 R

−(t−(τ+1))p̂t)
]

=
0. Clearly, p̂(sτ+1) < p(sτ+1) and ĉ(st) = c(st), for all t ≥ τ + 2, but

ĉ(sτ+1) = c(sτ+1) + p(sτ+1)− p̂(sτ+1) = c(sτ+1) + Eτ+1

[ ∞∑
t=τ+1

R−(t−(τ+1))pt

]
> c(sτ+1),

which would be an improvement and hence a contradiction. We prove the other direction
after proving part (ii).

Part (ii): Take any sequence of net payments {p(st)}∞t=τ that satisfies (39) and define

h(sτ
′
) ≡ −Eτ ′

[ ∞∑
t=τ ′

R−(t−τ ′)pt

]
≥ 0, ∀τ ′ > τ,

then h(sτ
′
) = −p(sτ ′) + R−1Eτ ′ [hτ ′+1] or p(sτ

′
) = −h(sτ

′
) + R−1Eτ ′ [hτ ′+1]. We can

therefore rewrite (36) as

y(st) + h(st) ≥ c(st) +R−1Et[ht+1], ∀t ≥ τ + 1, (41)

and (35) as
w(sτ ) ≥ c(sτ ) +R−1Eτ [hτ+1], (42)

where h(sτ ) = 0 as (37) holds with equality.
Moreover, any sequence {h(st)}∞t=τ+1 with h(st) ≥ 0, ∀t > τ , satisfies (39) as

Eτ ′

[ ∞∑
t=τ ′

R−(t−τ ′)pt

]
= Eτ ′

[ ∞∑
t=τ ′

R−(t−τ ′){−ht +R−1Et[ht+1]}
]

= −Eτ ′
[ ∞∑
t=τ ′

R−(t−τ ′)ht

]
+ Eτ ′

[ ∞∑
t=τ ′+1

R−(t−τ ′)ht

]
= −h(sτ

′
) ≤ 0.

Finally, to complete part (i), (⇐), the household would never default on a sequence
{h(st)}∞t=τ+1 with h(st) ≥ 0, ∀t > τ, establishing that if (39) is satisfied, the sequence {p(st)}∞t=τ
is implementable. 2

The problem with limited enforcement Pτ (w(sτ )) in equations (34) to (38) is therefore
equivalent to maximizing (34) subject to (42), (41), and (40), which can be written re-
cursively as in equations (1) to (4). Moreover, the proof can be extended to the case with
durable goods by adapting the proof in Rampini and Viswanathan (2013).
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Appendix C: Existence of a Stationary Equilibrium

This appendix shows first that, for givenR such that βR < 1, a unique bounded stationary
distribution of net worth exists, and second that when θ < θ̄, an equilibrium with an
interest rate satisfying βR < 1 exists. Proposition 10 provides a sufficient condition for
the existence of a bounded stationary distribution, in particular a unique lower bound w
for the stationary distribution via a restriction on the slope of the growth of wealth in
the lowest state next period.47

Proposition 10. Assume that βR < 1. If (1−θ)(1−δ)
℘

(1 − cw(w)) < 1 for all w, then

there is an unique stationary distribution on [w, w̄] where w is the unique solution to

y(s′)+ (1−θ)(1−δ)
℘

(w−c(w)) = w and w̄ is the lowest solution to y(s̄′)+(1−θ)(1−δ)k(w̄) =
w̄.

Proof of Proposition 10. Consider the function G(w) = y(s′) + (1−θ)(1−δ)
℘

(w − c(w))

which gives the wealth next period in the lowest state assuming that h(s′) = 0 (and hence
h(s′) = 0 for all s′ ∈ S). Since G(0) > 0 and the function G(w) has a slope less than

one, it must intersect the 45-degree line from above. Further since (1−θ)(1−δ)
℘

(1 − cw(w))

< 1, the function G(w) does not have any more intersections with the 45-degree line.
Thus a unique intersection w exists. Consider now the wealth next period in the low
state w(s′)(w). At any intersection where w(s′)(w) = w, we must have h(s′) = 0 from
µ(w) > βRµ(w) = βRµ′(w(s′)(w)), thus h(s′) = 0, ∀s′ ∈ S (no state is insured). Thus
at such an intersection, we must have w(s′)(w) = G(w), which implies that w(s′)(w)
intersects the 45-degree line only once at w. Further w(s′)(0) > 0, hence for w < w,
w(s′)(w) > w and for w > w, w(s′)(w) < w.

Consider the function Ḡ(w) = y(s̄′) + (1−θ)(1−δ)
℘

(w − c(w)). Since Ḡ(w) only differs

from G(w) by the constant y(s̄′) − y(s′), there is a unique intersection point with 45-
degree line at ŵ. Now consider the wealth in the highest state w(s̄′)(w). At w = 0,
w(s̄′)(0) ≥ w(s′)(0) > 0. Further at any intersection point w where w(s̄′)(w) = w (if such
a point exists), µ(w) > βRµ(w) = βRµ′(w(s̄′)(w)) and thus h(s̄′) = 0, the high state
cannot be insured. But then at such an intersection w,

Ḡ(w) = y(s̄′) +
(1− θ)(1− δ)

℘
(w − c(w)) ≥ y(s̄′) + (1− θ)(1− δ)k(w) = w(s̄′)(w) = w

which implies that any intersection w must have w ≤ ŵ. If there are multiple intersections,
we pick the lowest one and call this w̄ (at this intersection as we have already argued the
high state is not insured). It follows by construction that w(s̄′)(w) > w for all w < w̄.
Immediately, for w < w̄, µ(w) > µ′(w(s̄′)(w)) and hence the highest state is not insured.
Hence insurance is incomplete on [w, w̄].

Any w /∈ [w, w̄] is transient. For any w < w, create the sequence, wu0 = w, wu1 =
w(s̄′)(wu0 ), wu2 = w(s̄′)(wu1 ), . . . , wun = w(s̄′)(wun−1), . . ., and wun < w̄. This is a strictly

47For R > θ(1−δ)
δ+θ(1−δ) , this slope condition automatically obtains. The bound of the proposition allows

verification of a unique intersection at interest rates lower than θ(1−δ)
δ+θ(1−δ) , though these interest rates are

far from the equilibrium interest rate in our numerical illustration.
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increasing bounded sequence that must converge to a limit that is less than or equal to
w̄; in fact the limit is w̄. But then ∃Nu > 0 such that for n ≥ Nu, w

u
n > w and we

never go below w once we cross w as for n ≥ Nu w(s′)(wun) > w(s′)(w) = w as w(s′) is
strictly increasing in w. Similarly, if w > w̄, create the sequence wd0 = w, wd1 = w(s′)(wd0),
wd2 = w(s′)(wd1), . . . , wdn = w(s′)(wdn−1), . . .. By construction this is a decreasing bounded
sequence as w(s′) < w for w > w; hence it must converge to a limit. But this sequence

lives between the 45-degree line and the function G(w) = y(s′) + (1−θ)(1−δ)
℘

(w − c(w))

(which assumes no insurance of the lowest state). Hence it must converge to w (since at
any intersection with the 45-degree line, there is no insurance of the lowest state). But
then ∃Nd > 0 such that for n ≥ Nd, w

d
n < w̄ and we never go above w̄ once we cross w̄ as

for n ≥ Nd, w(s̄′)(wdn) < w(s̄′)(w̄) = w̄ since w(s′) is strictly increasing in w.48

We show existence of a unique stationary distribution as follows. We consider all right
continuous distribution functions on the interval [w, w̄]. Given two distribution functions
F1(w) and F2(w) we say that F1 � F2 if F1(w) ≤ F2(w) for all w (and F1 � F2 if
F1(w) ≤ F2(w) for all w with strict inequality for a positive interval of w). Given this
partial order, min{F1(w), F2(w)} and max{F1(w), F2(w)} are also distribution functions
and are the greatest lower bound and least upper bound for the pair {F1(w), F2(w)}.
Thus the set F = {F |F is a distribution on [w, w̄]} has as its least upper bound the
distribution F̄ (w), F̄ (w) = 0 for w < w̄ and F̄ (w̄) = 1 and as its greatest lower bound
the distribution F (w), F (w) = 1 for w ∈ [w, w̄]; hence the set F is a complete lattice.

Further the equilibrium mapping w(s′)(w) implies the adjoint map T ∗ : F → F by
T ∗(F (w)) =

∑S
s′=1 π(s′)F (w(s′)−1(w)); this is a monotone map in the following sense: if

F1 � F2, then T ∗(F1) � T ∗(F2) as

T ∗(F1(w)) =
S∑

s′=1

π(s′)F1(w(s′)−1(w)) ≤
S∑

s′=1

π(s′)F2(w(s′)−1(w)) = T ∗(F2(w)).

By Knaster-Tarski’s theorem, there exists a fixed point in the space of distribution func-
tions. We show next that this fixed point is unique. Start with the least upper bound
F̄ (w), then T ∗n(F̄ ) converges downwards to the highest fixed point. Similarly start with
the greatest lower bound F (w), then T ∗n(F ) converges upwards to the lowest fixed point.
Since these two limiting distributions are identical, the stationary distribution is unique.

Define w(s′n)(w) as the random wealth that occurs starting with wealth w where s′n

is the subsequent history of states for the next n periods. Let wo ∈ (w, w̄) and create
the strictly increasing sequence wun starting at w and the strictly decreasing sequence wdn
starting at w̄ (as before in this proof). Since wun → w̄ and wdn → w, there exists Nu and
Nd such that for n ≥ Nu, w

u
n > wo and for n ≥ Nd, w

d
n < wo. Take N = max{Nu, Nd}

and ε = min{(π(s̄′))Nu , (π(s′))Nd}. Since w(s′) is increasing in w, it follows that ∀n ≥ N
and ∀w ∈ [w, w̄], P n(w,w(s′n)(w) < wo) > ε and P n(w,w(s̄′n)(w) > wo) > ε, where s′n

(s̄′n) corresponds to the lowest (highest) state occurring n times. Hence the monotone
mixing condition in Theorem 2 in Hopenhayn and Prescott (1992) and in Theorem 2.1 in

48This proves that even though there may be multiple intersections of net worth in the highest state
next period w(s̄′)(w) with the 45-degree line, only the first intersection w̄ is relevant as any w > w̄ is
transient. The uniqueness of the intersection of G(w) with the 45-degree line is critical here.
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Bhattacharya and Lee (1988) is satisfied and a unique invariant distribution exists; fur-
ther starting from any initial distribution, the convergence to the invariant distribution
is exponential. 2

For θ < θ̄, we now prove the existence of an equilibrium interest rate R, with βR < 1,
such that the excess demand for collateralized claims equals zero, that is, rewriting (14),∫ w̄(R)

w(R)

E[h′(w|R)]dF (w|R)−
∫ w̄(R)

w(R)

θk(w|R)(1− δ)dF (w|R) = 0. (43)

From the proof of Proposition 7, we know that at βR = 1 there must be strict excess
demand for collateralized claims, that is, the left-hand side of (43) is strictly positive.

Suppose πh =
∑

s′∈Sh
π(s′) where Sh is a potential set of states to be insured. Then if

(1−θ)(1−δ)
℘

≥ 1
R−1πh

, households do not insure this set of states. This follows from the fact
that the return to insuring these states is less than the marginal return in terms of net
resale value of investing in the durable good in these states and purchasing the durable
good yields additional positive marginal utility in terms of housing services as well as a
payoff in the other states. Hence if (1−θ)(1−δ)

℘
≥ 1

R−1π(s′)
, no household insures any state.

We can rewrite this inequality as R ≤ [π(s′) + θ(1− π(s′))](1− δ); at such interest rates,
the left-hand side of (43) must be strictly less than zero.

Proposition 11. Assume that θ < θ̄. If for R ∈ [θ(1 − δ) + π(s′)(1 − θ)(1 − δ), β−1],
(1−θ)(1−δ)

℘
(1 − cw(w)) < 1 for all w, then there exists an R such that βR < 1 that solves

(43), that is, clears the market for collateralized claims.

Proof of Proposition 11. We have already shown that at R = θ(1−δ)+π(s′)(1−θ)(1−
δ), the left-hand side of (43) is strictly greater than zero and at R = β−1 (43) is strictly
less than zero. Also from Proposition 10, for all R ∈ [θ(1− δ) + π(s′)(1− θ)(1− δ), β−1],
a unique stationary distribution F (w|R) on [w(R), w̄(R)] exists. It is immediately clear
that both w(R) and w̄(R) are continuous in R since c(w|R) is continuous in w and R by
the theorem of the maximum. Further the net worth next period w(s′|R)(w) is continuous
in w and R. Hence, we take wl = min w(R) and wu = max w̄(R) for R ∈ [θ(1 − δ) +
π(s′)(1− θ)(1− δ), β−1] (these exist since w(R) and w̄(R) are continuous functions on a
compact set), and for each R, P (w,W ′|R) is induced by the function w(s′|R)(w) where
W ′ ⊂ [wl, wu]. Then if (wn, Rn) → (w,R), the sequence P (wn,W

′|Rn) → P (w,W ′|R)
using the continuity of w(R), w̄(R) and w(s′|R)(w). Further for each R, there is an unique
stationary distribution, and hence following the argument in Theorem 12.13 in Stokey and
Lucas with Prescott (1989), the stationary distribution is continuous in the parameter R.
Integrating against this stationary distribution we conclude that the left-hand side of (43)
must be continuous in R. Hence by the intermediate value theorem, there exists an R for
which (43) is zero, that is, an interest rate at which the market for collateralized claims
clears. 2
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Figure 1: Increasing Insurance

This figure displays insurance when household income follows an independent two state Markov process.
The solid (dashed) lines plot the policies for the low (high) state next period. Top left: insurance h′;
top right: net worth next period w′ and 45-degree line (dotted); bottom left: consumption c; and
bottom right: stationary distribution of net worth. The parameter values are: β = 0.90, R = 1.05,
Π(s, s) = Π(s̄, s̄) = 0.50, y(s) = 0.80, y(s̄) = 1.20, and preferences u(c) = c1−γ/(1− γ) with γ = 2.
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Figure 2: Insurance with Durable Goods as Collateral

This figure displays insurance with durable goods when income follows a two state Markov process with
independence (Panel A and B) and persistence (Panel C). The solid (dashed) lines plot the policies
for the low (high) state next period. In Panel C, the darker (and red) lines are associated with s and
the lighter (and green) lines with s̄. Top left: insurance h′; top right: net worth next period w′ and
45-degree line (dotted); bottom left (Panel A): consumption c; and bottom right (Panel A): durable
goods consumption k. Parameters are as in Figure 1 except that θ = 0.80 in Panel A and C and θ = 0.6
in Panel B and utility from durable goods g(k) = gk1−γ/(1− γ) with γ = 2 and g = 2. In Panel A and
B (C), Π(s, s) = Π(s̄, s̄) = 0.50 (0.75).
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Panel B: Effect of Collateralizability
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Panel C: Persistent income
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Figure 3: Equilibrium and Effect of Collateral on Insurance

This figure displays equilibrium insurance as a function of collateralizability θ. Panel A displays the
equilibrium net interest rate r (top left), aggregate insurance H (top right), aggregate durable goods K
(bottom left), and the welfare loss (in terms of equivalent income reduction (percent)) (bottom right).
Panel B displays the equilibrium distribution of net worth for various levels of θ (top) and inequality
measured by the cross-sectional standard deviation of consumption (bottom left) and net worth (bottom
right). Parameters are as in Panel A of Figure 2 except that g = 1, δ = 0.2, y(s) = 0.5, and y(s̄) = 1.5,
implying θ̄ = 0.4736.
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Figure 4: Household Risk Management with Durable Goods Price Risk

This figure displays household risk management with durable goods price risk when household income
and durable goods prices follow a two state Markov process with independence. The solid (dashed) lines
plot the policies for the low (high) state next period. The darker (and red) lines are associated with s
and the lighter (and green) lines with s̄. Top left: hedging h′; top right: net worth next period w′ and
45-degree line (dotted); bottom left: consumption c; and bottom right: durable goods consumption k.
Parameters are as in Figure 2 except that q(s) = 0.95 and q(s̄) = 1.05, and Π(s, s) = Π(s̄, s̄) = 0.50.
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Figure 5: Rent vs. Buy and Durable Goods Price Risk Management

This figure displays household risk management with durable goods price risk when households can
choose to rent as well as buy durables and where income and durable goods prices each follow an
independent two state Markov process which is independent over time. The solid (dashed) lines plot
the policies for the low (high) price state next period (except where noted otherwise). The darker (and
red) lines are associated with s and the lighter (and green) lines with s̄. Top left: hedging h′; top right:
net worth next period w′ and 45-degree line (dotted); bottom left: consumption c; and bottom right:
consumption of durable goods, total k (dotted), owned ko (solid), and rented kl (dashed). Parameters
are as in Figure 4 except that the monitoring cost m = 0.02.
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Appendix -- For Online Publication

Appendix D: Extensions

In this appendix we first compare our results from Section 2 to the savings behavior

in the standard buffer stock savings model. We show that buffer stock savings are not

monotone increasing in the state s and that convexity of the marginal utility is required

to guarantee precautionary behavior of household savings. Moreover, we compare the

limiting behavior of our model and the buffer stock savings model as βR → 1. Finally,

we extend the model to consider the financing of investment in human capital.

Appendix D.1: Comparison to Buffer Stock Savings Models

Consider the standard incomplete markets model of Bewley (1977), Aiyagari (1994), and

others.49 The household solves the following recursive problem by choosing (non-negative)

consumption c and (gross) savings h which do not vary with the state s′ next period (and

associated net worth w′) given the exogenous state s and the net worth w (cum current

income),

v(w, s) ≡ max
c,h,w′∈R+×RS+1

u(c) + βE[v(w′, s′)|s] (D.1)

subject to the budget constraints for the current and next period, ∀s′ ∈ S,

w ≥ c+R−1h, (D.2)

y′ + h ≥ w′, (D.3)

and the short-sale constraint

h ≥ 0. (D.4)

While this canonical model behaves similarly to ours in some ways, we stress that

household savings are not monotone increasing in the Bewley model, in the sense that

savings are decreasing in the current state s, which means that the household’s consump-

tion is lower in some states next period when the current state s is higher.

Proposition D.1 (Savings in Bewley model not increasing). Assume that Π(s, s′) is

stochastically monotone. (i) The marginal value of net worth vw(w, s) is decreasing in

net worth w and in the state s. (ii) The household’s savings h are increasing in w given

s, but decreasing in s given w; therefore, net worth and consumption next period w′ and

c′ are decreasing in the current state s.

49See Ljungqvist and Sargent (2012) for an authoritative treatise of savings behavior in incomplete

markets models.
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Proof of Proposition D.1. Part (i): The proof proceeds analogously to the proof of
Part (i) of Proposition 2.

Tv(w, s) ≡ max
c,h,w′∈R+×RS+1

u(c) + βE[v(w′, s′)|s]

subject to equations (D.2) through (D.4). Define the sets S and So as before. We show
that T (S) ⊂ So ⊂ S and hence v ∈ So has the required property.

Suppose that v ∈ S, but that ∃s+ > s, such that Tvw(w, s+) > Tvw(w, s), that is
Tv 6∈ So. Using the envelope condition, c+ < c which implies, using the budget constraint
(D.2), that h+ > h and w′+ = y′ + h+ > y′ + h = w, ∀s′ ∈ S. The Euler equation for
savings can be written as

Tvw(w, s) ≥ βRE[v−w (w′, s′)|s] ≥ βRE[v+
w (w′, s′)|s] if h = 0

Tvw(w, s) ∈ [βRE[v+
w (w′, s′)|s], βRE[v−w (w′, s′)|s]] if h > 0.

(D.5)

Using (D.5) and the envelope condition, we have

βRE[v−w (w′+, s
′)|s+] ≥ Tvw(w, s+) > Tvw(w, s) ≥ βRE[v+

w (w′, s′)|s].

However, since w′+ > w′, ∀s′ ∈ S, and given stochastic monotonicity, we also have that

E[v+
w (w′, s′)|s] ≥ E[v+

w (w′, s′)|s+] > E[v−w (w′+, s
′)|s+],

a contradiction. Therefore, Tv ∈ So.
Part (ii): Since v ∈ So by part (i), it is differentiable and vw(w, s) is decreasing in s.

Suppose that, given s, w+ > w and h+ < h, then

uc(c) = vw(w, s) = βRE[vw(w′, s′)|s] < βRE[vw(w′+, s
′)|s] ≤ vw(w+, s) = uc(c+),

whereas c+ > c implies that uc(c+) < uc(c), a contradiction. Thus, h is increasing in w
given s.

Let s+ > s and suppose that h+ > h for given w. Then c+ < c and w′+ > w′, ∀s′ ∈ S.
Then

uc(c) < uc(c+) = vw(w, s+) = βRE[vw(w′+, s
′)|s+] < βRE[vw(w′, s′)|s+] ≤ βRE[vw(w′, s′)|s]

since vw(w, s) is decreasing in s by part (i) and w′ is increasing in s′, contradicting (D.5).
So for s+ > s, h+ ≤ h and thus w′+ ≤ w′. Moreover, using the envelope condition,
uc(c

′) = vw(w′, s′) ≤ vw(w′+, s
′) = uc(c

′
+) and thus c′+ ≤ c′. 2

The parallels between our model and the Bewley economy are that since vw(w, s) is

decreasing in w and s in both cases, the envelope condition implies that current con-

sumption c is increasing in w and s in both economies as well. Therefore, both insurance

expenditures E[R−1h′|s] in our model and savings h in the Bewley economy increase in

w given s and decrease in s given w. The key distinction however is that insurance h′

2
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in our model increases in s, for all s′ ∈ S, although as stated before the total insurance

expenditures E[R−1h′|s] decrease in s; in other words, w′ and c′ increase in s, and insur-

ance is increasing in s in this sense. In contrast, savings h decrease in s implying that

net worth and consumption next period w′ and c′ decrease in s; again, household savings

are thus not increasing in s in the Bewley economy.

The critical difference is the following. If the future is brighter, the household in

the Bewley economy consumes more and saves less, making it less well off state-by-

state next period; in contrast, the household in our economy consumes more and buys

more state-contingent claims, which are now cheaper, making it better off state-by-state

next period, too. The incompleteness of markets has significant consequences for the

qualitative behavior of the economy.

In contrast to the precautionary nature of state-contingent savings in our model (see

Proposition 5), in the Bewley model convexity of marginal utility uc(c) is required to

guarantee precautionary savings.

Proposition D.2 (Precautionary saving in Bewley model). Assume that Π(s, s′) = π(s′),

∀s′ ∈ S. (i) If uc(c) is (weakly) convex in consumption c, the marginal value of net worth

vw(w) is convex in net worth w. (ii) Suppose π̃(s′) is a mean-preserving spread of π(s′).

If uc(c) is (weakly) convex in c, then household’s savings h̃ ≥ h.

Proof of Proposition D.2. Part (i): Suppose uc(c) is (weakly) convex. Take w0, w1 >
w0, and ϕ ∈ (0, 1), and define wϕ ≡ (1−ϕ)w0 +ϕw1 and analogously for other variables.
Consider operator T defined analogously to the one in the proof of Proposition D.1. By
the same argument, So ⊂ S and we can restrict our attention to functions in So. Assume
that savings are strictly positive at w0 and note that this implies that they are strictly
positive at w1 and indeed for any w ≥ w0 as savings are increasing in w by part (ii) of
Proposition D.1. From the first-order condition for savings we have

Tvw(w0) = uc(w0 −R−1h0) = βRE[vw(y′ + h0)]

and analogously for h1 at w1 and h(wϕ) at wϕ. Suppose v ∈ So and vw(w) is convex,
∀w ∈ R+, but that Tvw(w) is not convex, that is,

uc(wϕ −R−1h(wϕ)) = Tvw(wϕ) > (1− ϕ)Tvw(w0) + ϕTvw(w1)

= (1− ϕ)uc(w0 −R−1h0) + ϕuc(w1 −R−1h1) ≥ uc(wϕ −R−1hϕ),

and, thus, h(wϕ) > hϕ. But then, using the fact that vw(w) is convex, we have

(1− ϕ)E[vw(y′ + h0)] + ϕE[vw(y′ + h1)] ≥ E[vw(y′ + hϕ)] > E[vw(y′ + h(wϕ))]

and combining the two results, Tvw(wϕ) > βRE[vw(y′ + h(wϕ))], a contradiction. When
savings are zero at w1, then Tvw(w) = uc(w) in the relevant range which is convex by

3
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assumption. Let w∗ = infw{h > 0}. The above shows that Tvw(w) is convex on [0, w∗]
and [w∗,∞). Next we consider the case where w0 < w∗ < w1.

Note that for w ≤ w∗, Tvw(w) = uc(w), and for w > w∗, c < w as h > 0 and hence
Tvw(w) = uc(c) > uc(w). First, consider ϕ ∈ (0, 1) such that wϕ ≡ (1−ϕ)w0 +ϕw1 ≤ w∗;
then

(1− ϕ)Tvw(w0) + ϕTvw(w1) > (1− ϕ)uc(w0) + ϕuc(w1) ≥ uc(wϕ) = Tvw(wϕ).

If instead wϕ > w∗, then define ϕ∗ and ϕ̂ implicitly by w∗ = (1 − ϕ∗)w0 + ϕ∗w1 and
wϕ = (1 − ϕ̂)w∗ + ϕ̂w1, which implies that ϕ = (1 − ϕ̂)ϕ∗ + ϕ̂; then by the previous
argument

(1− ϕ∗)Tvw(w0) + ϕ∗Tvw(w1) > Tvw(w∗)

and hence

(1− ϕ)Tvw(w0) + ϕTvw(w1) = (1− ϕ̂)[(1− ϕ∗)Tvw(w0) + ϕ∗Tvw(w1)] + ϕ̂Tvw(w1)

> (1− ϕ̂)Tv(w∗) + ϕ̂Tvw(w1) ≥ Tvw(wϕ),

where the last inequality follows from the convexity above w∗. Therefore, Tvw(w) is
convex with strict convexity at w∗.

We already know that v ∈ So and for any v̂ ∈ So, T nv̂ → v. But by above if we start
with v̂ such that v̂w(w, s) is convex, then T nv̂ is convex; moreover, T nv̂w(w, s) = uc(ĉ)
and the policy function converges, and hence so does the marginal value of net worth.
Thus, vw(w, s) is convex, too.

Part (ii): Define S̄ and S̄o as in the proof of Proposition 5. Define the operator
T as in the proof of Proposition D.1 and define the operator T̃ associated with π̃(s′)
analogously. Proceeding along the lines of the proof of part (i) of Proposition D.1, one
can show that T (S̄) ⊂ S̄o ⊂ S̄ and analogously for T̃ .

Pick v̂ ∈ S̄o such that v̂w(w) is convex. We show that if T̃ nv̂w(w) ≥ T nv̂w(w), then
T̃ n+1v̂w(w) ≥ T n+1v̂w(w). Suppose that T̃ nv̂w(w) ≥ T nv̂w(w), but that h̃ < h, and hence
c̃ > c and w̃′ < w′. Using the first-order condition for savings, we have

uc(c) = E[βRT nvw(y′ + h)] ≤ Ẽ[βRT nvw(ỹ′ + h)] < Ẽ[βRT̃ nvw(w̃′)] ≤ uc(c̃),

and thus c > c̃, a contradiction. Thus, h̃ ≥ h, c̃ ≤ c, and T̃ n+1v̂w(w) ≥ T n+1v̂w(w).
Since T nv̂ → v and T nv̂w(w, s) = uc(c) (and analogously for T̃ v̂), and the policy

functions converge, the value functions v and ṽ satisfy the property, too. 2

While this result is well-understood (see Leland (1968), Sandmo (1970), Sibley (1975),

and Kimball (1990)), we provide a simple and to the best of our knowledge novel proof

using a similar recursive approach to the one in the proof of Proposition 2. Again, we

emphasize that risk aversion is sufficient for state-contingent savings to be precautionary

in our model, in contrast to savings in incomplete markets models which require further

assumptions about preferences, in particular prudence, to guarantee precautionary be-

havior. Note that the presence of borrowing constraints strengthens the precautionary

4



Appendix -- For Online Publication

demand for saving by inducing local convexity in the marginal utility of net worth (see

Deaton (1991)), but additional assumptions about preferences are required to guarantee

precautionary behavior globally.

Figure D.1 illustrates the effect of an increase in risk (that is, a mean-preserving

spread) on insurance in our model and on saving in the incomplete markets model when

the marginal utility is convex. The top left panel shows that in our model the expenditure

on state-contingent savings is precautionary (see Proposition 5). The bottom left panel

shows that, when uc(c) is convex, saving is precautionary in the Bewley economy (see

Proposition D.2). The example has an independent income process with three states.

Specifically, y(s′) ∈ {y − σ, y, y + σ} with probabilities π(s′) = πσ, 1 − 2πσ, and πσ

respectively. We study an increase in risk in the sense of a mean-preserving spread by

considering values of πσ equal to 0 (in which case the economy is deterministic), 0.2, and

0.5 (which is the example studied in Figure 1).

Notice that the deterministic limit of our economy and the Bewley economy coincide

and hence the solid (black) line denoting “insurance” expenditure R−1h′ in our model in

the top left panel is identical to the solid (black) line denoting saving R−1h in the Bewley

economy in the bottom left panel. In a deterministic economy, there is no “insurance” or

saving in the steady state, but for higher (and transitory) levels of net worth “insurance”

or saving is clearly positive as households dissave slowly.

In our model, insurance expenditures are increasing in risk (see the top left panel),

but the behavior of insurance for each state h(s′) is not monotone in risk. Indeed, one

can prove that infw{h(s′) > 0} is the same for all values of πσ and that in a neighborhood

above that threshold h(s′) is decreasing in πσ. But the top right panel shows that this

pattern reverses for higher levels of net worth. In contrast, in the example h(s̄′) is

monotone increasing in πσ. In comparison, in the Bewley economy with convex marginal

utility, an increase in risk increases saving (as the bottom left panel shows), that is,

households save more for a given level of wealth than they would in the deterministic

economy.

Appendix D.2: Insurance when Households are Eventually Un-

constrained

Consider the limit of the economy in Section 2 where βR = 1, which means that house-

holds are eventually unconstrained.50 We show that the economy displays full insurance

50Aguiar, Amador, and Gopinath (2009) discuss the effect of impatience on the long run behavior of

models with limited commitment.
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under the stationary distribution in the limit and that household net worth is nevertheless

bounded in the limit. These results are related to results for the classic class of income fluc-

tuations problems studied among others by Yaari (1976), Schechtman (1976), Schechtman

and Escudero (1977), Bewley (1977, 1980), Aiyagari (1994), and especially Chamberlain

and Wilson (2000), in which households solve a consumption savings problem with non-

contingent debt and borrowing constraints, that is, have access to incomplete markets

only.51 Our results are similar in that there is complete consumption insurance in the

limit, but they are rather different in that net worth is bounded in the limit whereas it

grows without bound in these related papers. Thus, our model features substantially less

asset accumulation than the canonical model with incomplete markets.

We emphasize that for net worth levels below the upper bound of net worth under

the stationary distribution wbnd(s), ∀s ∈ S (see the proof of Proposition 4 for an exact

definition), insurance is incomplete and increasing in current net worth even when βR = 1,

although such levels of net worth are transient. The main result of our paper hence obtains

even in this case, albeit only in the transition.

When income is independent over time and βR = 1, we know from equation (7) and

the envelope condition that vw(w) = vw(w′) + λ′ and therefore vw(w) is non-increasing

and w is non-decreasing.52 Denoting the upper bound of net worth under the stationary

distribution by w̄, we hence have vw(w̄) ≥ vw(w′), but by strict concavity vw(w̄) ≤ vw(w′),

and thus w̄ = w′, ∀s′ ∈ S, that is, w̄ is absorbing. Note that for w < ȳ, λ(s̄′) > 0 and

w(s̄′) = ȳ. Moreover, suppose ∃s′ ∈ S, such that w′ > ȳ, then vw(ȳ) > vw(w′) and

λ′ > 0, that is, w′ = y′ ≤ ȳ, a contradiction. Therefore, w′ = ȳ, for all s′ ∈ S. Thus, the

stationary net worth distribution collapses to unit mass at w̄ = ȳ.

Proposition D.3 states that the full insurance result is general, that is, does not re-

quire independence of the income process. Moreover, as βR goes to 1, the stationary

distribution converges to the stationary distribution given βR = 1 and, when the income

process is independent, the stationary distribution for higher β first-order stochastically

dominates the distribution for lower β.

Proposition D.3 (Full insurance under the stationary distribution in the limit). (i)

When βR = 1, the household engages in full insurance under the stationary distribution.

(ii) Let p∗(β) be the stationary distribution of net worth for given β. As β ↗ R−1,

p∗(β) → p∗(R−1); moreover, when Π(s, s′) = π(s′), ∀s, s′ ∈ S, if β+ > β, then p∗(β+)

FOSD p∗(β).

51In a calibrated life-cycle model with incomplete markets, Fuster and Willen (2011) study the trade-off

between insuring consumption across states and intertemporal smoothing quantitatively.
52This result is reminiscent of the downward rigidity of wage contracts in Harris and Holmström (1982).
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Proof of Proposition D.3. Part (i): From equation (7) and the envelope condition
that vw(w, s) = vw(w′, s′) + λ′ and therefore vw(w, s) is non-increasing. Consider the
marginal value of net worth at the upper bound of the stationary distribution for some
state s, vw(w̄(s), s); suppose there exists some state, say, w.l.o.g., next period, such that
vw(w̄(s), s) > vw(w′, s′). But vw(w′, s′) ≥ vw(w′′, s′′), ∀s′′ ∈ S, including s′′ = s. But
then, by concavity, vw(w̄(s), s) ≤ vw(w′′, s), a contradiction. Thus, vw(w, s) = vw(w′, s′),
∀(w, s), (w′, s′) in the support of the stationary distribution.

Part (ii): We first prove that as β ↗ R−1, p∗(β) → p∗(R−1). From the proof of
Proposition 4 and Theorem 11.4 in Stokey and Lucas with Prescott (1989), we know that

‖p0P (β)k − p∗(β)‖∆ ≤ (1− ε)k‖p0 − p∗(β)‖∆ ≤ (1− ε)k2,

where p0 and p∗(β) are defined in the proof of Proposition 4 and ‖ · ‖∆ denotes the total
variation norm, and we use the fact that the total variation norm is bounded by 2. Note
that ε = ε(ȳ,s̄) does not depend on β.

Let δn > 0, δn ↘ 0. Given δn, there exists kn such that ‖p0P (β)kn − p∗(β)‖∆ < δn/2,
∀β. Further, pick βn such that ∀β > βn,

vβw(ȳ, s̄) = (βR)lvβw(wβl (s), s), wβl (s) ≥ y(s), and |wβl (s)−w∗(s)| < δn, 1 ≤ l ≤ kn, ∀s 6= s̄,

where vR
−1

w (ȳ, s̄) = vR
−1

w (w∗(s), s), ∀s 6= s̄. Note that by continuity of the optimal policy
in β we can ensure that there is such a βn. Essentially, for all β > βn, the household
insures all states (except the highest one) for the first kn periods.

Define Hn(β) = {z ∈ Z∗(β)|p0P (β)kn(z) > 0}, Rn(β) = {z ∈ Z∗(β)|p0P (β)kn(z) =
0} = Z∗(β) \Hn(β), and Hn(β, s) = {z ∈ Z∗(β)|z = (wβl (s), s), 1 ≤ l ≤ kn}, ∀s 6= s̄, and
Hn(β, s̄) = {(ȳ, s̄)}. By construction, we have p0P (β)kn(Hn(β, s)) = p0P (R−1)kn({(w∗(s), s)})
and p0P (β)kn(Hn(β)) = p0P (R−1)kn(Z∗(R−1)) = 1. For β > βn,

|p∗(β)(Hn(β, s))− p∗(R−1)({(w∗(s), s)})| < |p∗(β)(Hn(β, s))− p0P (R−1)kn({(w∗(s), s)})|
+|p0P (R−1)kn({(w∗(s), s)})− p∗(R−1)({(w∗(s), s)})|
= |p∗(β)(Hn(β, s))− p0P (β)kn(Hn(β, s))|
+|p0P (R−1)kn({(w∗(s), s)})− p∗(R−1)({(w∗(s), s)})| < δn/2 + δn/2 = δn,

which follows from the convergence in the total variation norm given any β. Moreover,
Hn(β, s)→ {(w∗(s), s)}, ∀s 6= s̄, and p∗(β)(Rn(β))→ 0 and p∗(β)(Hn(β))→ 1.

We now prove that when Π(s, s′) = π(s′), ∀s, s′ ∈ S, if β+ > β, then p∗(β+) FOSD
p∗(β). We follow a proof strategy similar to the one used in Part (i) of Proposition 5.
Define the operator T as in the proof of Proposition 2. Let β+ > β and denote variables
associate with β+ with a subscript +. As before, T (S̄) ⊂ S̄o ⊂ S̄ and analogously for T+.

Pick v̂ ∈ S̄o. We show that if T n+v̂w(w, s) ≥ T nv̂w(w, s), then T n+1
+ v̂w(w, s) ≥

T n+1v̂w(w, s). Suppose T n+v̂w(w, s) ≥ T nv̂w(w, s), but that T n+1
+ v̂w(w, s) < T n+1v̂w(w, s),

and hence by the envelope condition uc(c+) < uc(c), implying that c+ > c and E[h′+|s] <
E[h′|s]. If so, there must exist a state s′ for which 0 ≤ h+(s′) < h(s′) and w+(s′) < w(s′),
but then

uc(c+) < uc(c) = βRT nvw(w(s′), s′) ≤ βRT nvw(w+(s′), s′) < β+RT
n
+vw(w+(s′), s′) ≤ uc(c+),

7
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a contradiction. Hence, T n+1
+ v̂w(w, s) ≥ T n+1v̂w(w, s), c+ ≤ c, and E[h′+|s] ≥ E[h′|s].

Since T nv̂ → v and T nv̂w(w, s) = uc(c) (and analogously for T+v̂), and the policy
functions converge, the value functions v and v+ satisfy the property, too.

Note that if Π(s, s′) = π(s′), ∀s, s′ ∈ S, then net worth in the insured states wh is
constant and E[h′+] ≥ E[h′] implies wh+ ≥ wh. In this case we can follow the proof of
Part (i) of Proposition 4 and start at (ȳ, s̄), a recurrent state, with the distribution

p0 =

{
1 if z = (ȳ, s̄)
0 if z 6= (ȳ, s̄), z ∈ Z∗(β).

Let P (β) denote the transition matrix on the induced state space z = (w, s) ∈ Z∗(β).
Then p0P (β+)k FOSD p0P (β)k and hence p∗(β+) FOSD p∗(β). 2

In the case of a symmetric two state Markov chain for income, we can solve for the

stationary distribution of net worth in closed form. Specifically, say S = {sL, sH} with

sL < sH , and Π(sH , sH) = Π(sL, sL) ≡ p. We use subscripts L and H where convenient.

Using the fact that the stationary distribution of y is (1/2, 1/2) and that wH = yH since

the household does not insure the highest state next period given stochastic monotonicity

(see Proposition 3), wL = yL + hL, cH = wH − (1 − p)R−1hL, cL = wL − pR−1hL, and

cH = cL, that is, full insurance, we obtain

hL =
R

R− ρ
(yH−yL), wL−wH =

ρ

R− ρ
(yH−yL), cH = cL ≡ c = E[y]+

1

2

r

R− ρ
(yH−yL)

where ρ = 2p − 1 ≥ 0 and r ≡ R − 1. When income is independent over time, p = 1/2

and ρ = 0, we have hL = yH − yL, wH = wL = yH , and c = E[y] + r/R(yH − E[y]).

Note that wL ≥ wH and that the difference wL−wH is increasing in the persistence ρ.

So net worth as we defined it is higher in the low state than in the high state. To see why

this is, denote the present value of income (ex current income), that is, human capital,

by PVs, and note that

PVH = R−1(p(yH + PVH) + (1− p)(yL + PVL))

PVL = R−1((1− p)(yH + PVH) + p(yL + PVL))

which implies that PVH − PVL = wL − wH or wH + PVH = wL + PVL, that is, total

wealth, (financial) net worth plus human capital, is constant across states. When the

household has low current income, his (financial) net worth is high to compensate for the

reduction in present value of future labor income. When income is independent over time,

the present value of future labor income is constant across states and so is the household’s

(financial) net worth.

8
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To sum up, when βR = 1, households are eventually unconstrained and fully insured,

but their net worth remains finite, in contrast to the models with incomplete markets in

which households accumulate infinite buffer stocks to smooth consumption in the limit.53

Appendix D.3: Financing Human Capital

Age-income profiles are upward sloping on average partly because of economic growth

and partly presumably because of learning by doing, that is, skill accumulation with ex-

perience. These properties of the labor income process give households further incentives

to borrow as much as they can against their durable goods, such as housing, and thus

exhaust their debt capacity and do not purchase insurance.54

Suppose moreover that households are able to invest in human capital (or education) e.

An amount of human capital e invested in the current period, which includes both foregone

labor income and direct costs, results in income A′f(e) in state s′ next period, where f

is strictly increasing and strictly concave, lime→0 fe(e) = +∞, and lime→∞ fe(e) = 0,

and the productivity of human capital A′ > 0, for all s′ ∈ S, is described by a Markov

process also summarized by state s. Human capital depreciates at a rate δe ∈ (0, 1).

Note that households in our model can borrow against neither future labor income nor

human capital, as education capital is inalienable, and can only borrow against durable

goods. The household’s problem is to choose (non-negative) consumption c, (fully levered)

durable goods k, human capital e, and a portfolio of Arrow securities h′ (with associated

net worth w′) for each state s′ given the exogenous state s and net worth w (cum current

income, durable goods net of borrowing, and human capital) to maximize (8) subject to

the budget constraints for the current and next period, ∀s′ ∈ S,

w ≥ c+ ℘k + e+ E[R−1h′|s], (D.6)

A′f(e) + e(1− δe) + (1− θ)k(1− δ) + h′ ≥ w′, (D.7)

and the short-sale constraints (4), ∀s′ ∈ S. Note that the household’s problem is still

well behaved, that is, the constraint set is convex.

Proposition D.4 (Insurance and human capital investment). In the problem with in-

vestment in human capital, if a household’s current net worth w is sufficiently low, the

household is constrained against all states next period and hence does not engage in in-

surance.

53That said, assuming βR < 1, Castañeda, Dı́az-Giménez, and Ŕıos-Rull (2003) and the subsequent

literature are able to match the wealth accumulation in calibrated incomplete markets models.
54Such age-income profiles can be captured by specifying the Markov chain for income appropriately.
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Proof of Proposition D.4. The household’s Euler equation for investment in human
capital can be written as

1 = E

[
β
vw(w′, s′)

vw(w, s)
(A′fe(e) + (1− δe))

∣∣∣∣ s]
≥ Π(s, s′)β

vw(w′, s′)

vw(w, s)
(A(s′)fe(e) + (1− δe)), ∀s, s′ ∈ S.

The budget constraint (D.6) implies that w ≥ e and hence as w goes to zero, so does e
implying that fe(e) goes to +∞. But then βvw(w′, s′)/vw(w, s) must go to zero, ∀s′ ∈ S,
using the Euler equation for investment in education, and, using equation (7), βλ′/µ must
go to R−1 implying that the multipliers on the short-sale constraints λ′ > 0, ∀s′ ∈ S. 2

The intuition is that if the household’s net worth is sufficiently low, then the house-

hold’s human capital has to be very low, too, and thus the marginal rate of transformation

on investment in human capital must exceed the return on saving net worth for state s′,

for all states. Thus, investment in education is an additional reason why households are

likely to have higher net worth later in life, giving them further incentives to finance as

much of their durable goods purchases as they can, rather than using their limited ability

to pledge to shift funds across states later on.

10
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Figure D.1: Risk and Precautionary Behavior of Insurance and Saving

This figure displays the effect of an increase in risk on the precautionary behavior of insurance in our
model (top two panels) and of saving in a Bewley (1977) economy with convex uc(c). Household income
follows an independent three state Markov process with y(s′) ∈ {y−σ, y, y+σ} and π(s′) = πσ, 1− 2πσ,
and πσ, respectively, with y = 1, σ = 0.2, and πσ taking the values 0 (solid (black) – deterministic case),
0.2 (dash-dotted (green)), and 0.5 (dashed (red) – two state case as in Figure 1). For our model, the
top left panel displays insurance expenditures E[R−1h′] and the top right panel insurance for each state
next period h(s′) as a function of net worth for various values of πσ. For the Bewley (1977) economy,
the bottom left panel displays saving h as a function of net worth for various values of πσ. The other
parameter values are as in Figure 1.
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