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Abstract

We study a bargaining model in which a buyer makes frequent offers to a privately

informed seller, while gradually learning about the seller’s type from “news.” We show

that the buyer’s ability to leverage this information to extract more surplus from the

seller is remarkably limited. In fact, the buyer gains nothing from the ability to nego-

tiate a better price despite the fact that a negotiation must take place in equilibrium.

During the negotiation, the buyer engages in a form of costly “experimentation” by

making offers that are sure to earn her negative payoffs if accepted, but speed up learn-

ing and improve her continuation payoff if rejected. We investigate the effects of market

power by comparing our results to a setting with competitive buyers. Both efficiency

and the seller’s payoff can decrease by introducing competition among buyers.
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1 Introduction

A central issue in the bargaining literature is whether trade will be (inefficiently) delayed.

What is often ignored, however, is that if trade is in fact delayed, new information may come

to light. Of course, the players’ anticipation of this information may itself affect the amount

of delay in the negotiation.

For example, consider a startup that has “catered” its innovation to a large firm with the

aim of being acquired (an increasingly common strategy—see Wang (2015)). The longer the

startup operates as an independent business, the more the large firm expects to learn about

the quality of the innovation, which can influence the offers that it tenders. At the same

time, delay is inefficient as the large firm can generate greater value from the innovation due

to economies of scale and its portfolio of complementary products. We are interested in how

the large firm’s ability to learn about the startup over time affects its relative bargaining

power, trading dynamics, and the amount of surplus realized from the potential acquisition.

As another example, consider the due diligence process associated with a corporate acqui-

sition or commercial real estate transaction. This information gathering stage is inherently

dynamic; the acquirer/purchaser must decide how long to continue gathering information,

thereby delaying the transfer of ownership, as well as how to use the information acquired to

maximize the profitability of the transaction. How does the acquirer’s ability to conduct due

diligence and renegotiate the price influence the eventual terms of sale and the profitability

of the acquisition?

In this paper, we propose a framework to answer these questions. We study a model

of bargaining in which the uninformed party (the “buyer”) makes frequent offers to the

informed party (the “seller”) while simultaneously learning gradually about the seller’s type

from an observable news process. There is common knowledge of gains from trade, values are

interdependent, and the seller is privately informed about the quality of the tradable asset

(i.e., the seller’s type), which may be either high or low. Because of discounting, the efficient

outcome is immediate trade. We pose the model directly in continuous time, which captures

the idea that there are no institutional frictions in the bargaining protocol and facilitates a

tractable analysis. News is modeled as a Brownian diffusion process with type-dependent

drift.

We construct an equilibrium of the game and prove that it is the unique stationary

equilibrium. In it, the buyer’s ability to leverage her access to information in order to extract

more surplus from the seller is remarkably limited. In particular, the buyer’s equilibrium

payoff is identical to what she would achieve if she were unable to negotiate the price based

on new information. In addition, delay occurs if and only if there is an adverse-selection
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problem. Otherwise, the Coasian incentive to speed up trade overwhelms the buyer’s desire

to learn about the seller’s type, and trade occurs immediately. The latter result extends

existing no-delay results found in bargaining models without news (Fudenberg et al., 1985;

Gul et al., 1986; Deneckere and Liang, 2006).

When trade is delayed the buyer engages in a form of costly “experimentation” by making

offers that are sure to earn her negative payoffs if accepted. That is, the buyer makes

some offers hoping that they will be rejected. Such rejections improve her information and

continuation payoff. Yet, the buyer exhausts all of the benefits from this experimentation

leaving her with precisely the same payoff she would obtain if she were unable to make such

offers. Thus, despite the fact that a negotiation takes place and the buyer responds to good

(bad) news by adjusting her offer up (down), she is no better off by being able to do so.

In fact, the sole beneficiary of this experimentation is the low-type seller, whose payoff is

strictly higher than his value to the buyer.

We investigate the effects of market power by comparing our results to those of the

competitive-buyer model of Daley and Green (2012) (hereafter, DG12). We find novel dif-

ferences in both the pattern of trade and the resulting efficiency. With a single buyer, the

intensity of trade with the low type is strictly positive and smooth (i.e., proportional to

dt), whereas in DG12 it involves a region of no trade and atoms. Perhaps most surprisingly,

both efficiency and the seller’s payoff can decrease by introducing competition among buyers.

This finding is most starkly illustrated in the no-adverse-selection case: with a single buyer

trade is immediate and therefore efficient, whereas trade is delayed with competitive buyers

when the news process is sufficiently informative.

Our comparison of the single-buyer and competitive-buyer settings sheds new light on

the interpretation of the Coasian force. One common interpretation of the Coasian force

is that competition with one’s future self is sufficient to simulate the competitive outcome.

Yet, as noted above, the single and competitive buyer outcomes are distinct in the presence

of news. We therefore propose a different interpretation of the Coasian force: competition

with one’s future self renders attempts to screen through prices futile.

We formalize this finding by considering an auxiliary game, which we refer to as the “due

diligence problem,” in which the price is fixed at the high-type seller’s reservation value

and the buyer’s strategy is a stopping rule corresponding to a date at which to execute the

transaction. We demonstrate that the buyer’s payoff in the due diligence problem is equal

to her equilibrium payoff in the true game, while the low-type seller is strictly better off in

the true game.

We employ our interpretation of the Coasian force to solve two extensions of the model.

First, we consider an extension in which investigation is costly for the buyer. Second, we
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consider an extension in which the news process includes a Poisson component. In both

cases, we construct the equilibrium by first solving for the buyer’s value function in the

analogous due diligence problem and then identifying the strategies and seller value function

consistent with this payoff. The advantage of our approach is that the solution to the due

diligence problem is independent of the seller’s payoff and therefore the equilibrium can be

constructed in relatively straightforward steps rather than through the usual, and sometimes

arduous, fixed-point analysis.

Returning to our motivating examples, our results have the following implications. First,

we provide a rational explanation for why some startups choose to “cater” their innovation to

a single large firm, even if doing so does not increase the value of the innovation to the firm.

This somewhat peculiar strategy limits competition in the acquisition market. However, by

doing so, the startup incents the acquiring firm to experiment with its offers (as described

above), which can dominate the effect of competition and lead to a higher payoff for the

seller. Second, when considering ex-ante incentives of entrepreneurs, our results suggest that

startups who choose to cater their innovations will be of lower average value than startups

that pursue more traditional exit strategies.

Our finding, that the buyer loses money on transactions when trading with a low-type

seller, can also help rationalize the stylized fact in the M&A literature that a significant

fraction of the acquisitions of public companies lose money for the acquiring firm (Andrade

et al., 2001; Moeller et al., 2005). Existing theories for this fact are usually based on agency

conflicts (Jensen, 1986), managerial biases (Malmendier and Tate, 2008), or stock market

inefficiencies (Shleifer and Vishny, 2003). Yet, Higgins and Rodriguez (2006) present evidence

that suggests asymmetric information plays a role. A specific prediction of our model is that

a downward revision of the acquisition price is a negative signal about the market value of the

acquiring firm. Despite paying a lower price, the fact that a such a price was accepted reveals

sufficiently negative information about the target so as to reduce the market expectation

of the (net) value of the acquisition. Another implication is that, due to Coasian forces,

one should expect to see acquirers (i.e., uninformed parties) willing to forego contractional

options that would allow them to renegotiate in response to news, and targets (i.e., informed

parties) should be eager to provide them.

1.1 Related Literature

Our work belongs to the literature investigating frequent-offer bilateral bargaining games,

following Fudenberg et al. (1985) and Gul et al. (1986).1 Broadly speaking, our contribution

1See work by Evans (1989), who studies the impactive of relative discount factors on the bargaining
outcome, and Vincent (1989), who provides an example demonstrating the possibility of limiting delay.
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to this literature is to develop a tractable framework for understanding the effect of news on

bargaining dynamics.

Deneckere and Liang (2006) (hereafter, DL06) analyze an interdependent-value setting

in the absence of news and show that the equilibrium is characterized by “bursts” of trade

followed by periods of delay.2 During a period of delay, the buyer’s belief must be exactly

such that the Coasian desire to speed up trade is absent, which is non-generic. The addition

of learning via a diffusion process, even if arbitrarily noisy, means that the buyer’s belief

cannot remain constant at such a belief over any period of time. As a result, our findings

are considerably different from DL06 even in the limit as the news becomes completely

uninformative (see Section 6.3).

Fuchs and Skrzypacz (2010) (hereafter, FS10) study the independent-value setting with

the addition of a Poisson arrival of a game-ending event. Upon arrival, the uninformed player

recieves a payoff that is positively correlated with the informed player’s value. The primary

interpretation given to the event is the arrival of a new trader, but it can also be interpreted

as the arrival of a signal which reveals the informed player’s private information. Under this

latter interpretation, a crucial difference is that the information arrival in FS10 alters the

support of the uninformed party’s beliefs, unlike our Brownian news process. As the period

length shrinks to zero, they show that the outcome features inefficient delay. In contrast,

with Brownian news and independent values (a special case of Section 7), the equilibrium of

our model features immediate trade. The contrast between Poisson arrivals and Brownian

news is further illustrated in Section 8.2.

FS10 also show that the uninformed party’s payoff converges to her outside option of

waiting for an arrival. They conclude that “trading at marginal cost (appropriately defined)

is the general defining property of the Coasian dynamics.” While our results are not inconsis-

tent with these findings, the analogous outside option in our model is endogenous, and hence

so too is the appropriate definition of marginal cost. This renders their defining property of

the Coasian dynamics (i.e., trading at marginal cost) difficult to operationalize, especially

in comparison to ours (i.e., the inability to gain from screening).

Our work is also related to Ortner (2017), who analyzes a continuous-time model of a

durable-good monopolist whose cost varies stochastically over time. A common feature is

that the stochastic component (costs in Ortner (2017), news in this paper) can create an

option value for the uninformed party to delay trade. Villamizar (2018) extends FS10 to

a setting where the outside option is endogenously determined by the entry decision of a

2Fuchs and Skrzypacz (2013) show that trade becomes “smooth” and the buyer fails to capture any rents
in the no-gap limit. In our model, there is a gap, the equilibrium features smooth trade prior to the end
when there is a burst, and the buyer does capture rents, though not from screening.
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third player, which leads to novel considerations regarding the privacy of offers. Tsoy (2016,

2017) studies the effect of public information in an alternating-offer bargaining model with

a global games information structure. Recent work by Ishii et al. (2017) and Ning (2017)

explore the effect of learning via public information within symmetric information bargaining

environments. Finally, DeMarzo and He (2017) study leverage dynamics of a firm, when the

manager cannot commit to a future leverage policy. Our finding—that the buyer does not

benefit from screening through price offers—is analogous to their finding that the firm’s

shareholders cannot benefit from its leverage policy. A similar property arises with respect

to the large shareholder’s trading strategy in the continuous-time limit of DeMarzo and

Urošević (2006).

2 The Model

There are two players, a seller and a buyer, and a single durable asset of type θ ∈ {L,H},
which is the seller’s private information. Let P0 ∈ (0, 1) denote the prior probability that

the buyer assigns to θ = H. The seller’s opportunity cost of parting with the asset is Kθ,

where we normalize KL = 0 < KH . The buyer’s value for the asset is Vθ, with VH ≥ VL.

There is common knowledge of gains from trade: Vθ > Kθ for each θ.

The game is played in continuous time, starting at t = 0 with an infinite horizon. At

every time t, the buyer makes a price offer to the seller. If the seller accepts an offer of w

at time t, the transaction is executed and the game ends. The payoffs to the seller and the

buyer respectively are e−rt(w −Kθ) and e−rt(Vθ − w), where r > 0 is the common discount

rate. If trade never takes place, then both players receive a payoff of zero. Both players are

risk-neutral, expected-utility maximizers.

The equilibrium bargaining dynamics will depend on whether or not a static adverse

selection problem can arise. As in DG12, we define the condition as follows:

Definition 1. The Static Lemons Condition (SLC) holds if and only if KH > VL.3

Until Section 7, we assume the SLC holds.

3The SLC is related to the Static Incentive Constraint of DL06, which is satisfied if and only if KH ≤
E[Vθ|P0]. Hence, the SLC implies that there exists at least some non-degenerate P0 such that this Static
Incentive Constraint fails.
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2.1 News Arrival

Prior to reaching an agreement, news about the seller’s asset is revealed via a Brownian

diffusion process, X, which satisfies X0 = 0 and evolves according to

dXt = µθdt+ σdBt, (1)

where B = {Bt,Ft, 0 ≤ t ≤ ∞} is standard Brownian motion on the canonical probability

space {Ω,F ,P}.4 Let Ht denote the σ-algebra generated by {Xs : 0 ≤ s ≤ t}.
At each time t, the entire history of news, {Xs, 0 ≤ s ≤ t}, is observable to both players.

The parameters µH , µL and σ are common knowledge and without loss of generality, µH ≥
µL. Define the signal-to-noise ratio φ ≡ (µH − µL)/σ. When φ = 0, the news is completely

uninformative. Larger values of φ imply more informative news. In what follows, we assume

that φ > 0, unless otherwise stated.

A heuristic description of the timing of the game is depicted in Figure 1.

dt

Buyer makes 
an offer

Seller accepts  
(and the game ends)

or rejects 

News about the seller 
is revealed

Buyer makes 
another offer

Figure 1: Heuristic Timeline of a Single “Period”

2.2 Strategies and Equilibrium Concept

Formulating the model directly in continuous time facilitates a tractable analysis (e.g., the

unique equilibrium is solved for in closed form) and sharp comparative static results. How-

ever, it does not allow for reasoning by backward induction nor conventional equilibrium

concepts such as Perfect Bayesian Equilibria (PBE) due to well-known existence issues fol-

lowing off-path behavior (Simon and Stinchcombe, 1989). In line with the approach adopted

in related continuous-time models (e.g., DG12, Ortner, 2017), we develop an equilibrium

concept suited to the formal environment and motivated in part by the discrete-time analog

of our model. Below we lay out the formal components of and requirements for equilibrium

in turn, and collect them in Definition 2.

4Because θ is also a random variable, X is defined over the probability space {Ω′,H,Q}, where Ω′ = Ω×Θ,
H = F × 2Θ and Q = P × ν, where ν is the measure over Θ ≡ {L,H} defined implicitly by P0.
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Before doing so, a brief overview may be useful. We first take as given an offer process,

W = {Wt : 0 ≤ t <∞}, specifying the buyer’s offer at each time t given the history of news

and conditional on all past offers having been rejected. The first two conditions require that

the seller’s strategy is optimal given W (Condition 1) and that the buyer updates her belief

in accordance with the seller’s strategy and Bayes rule (Condition 2). These conditions are

familiar, but rather weak requirements for equilibria as they are imposed only along the

equilibrium path. Next, we look for equilibria in which player strategies are Markovian with

the buyer’s belief as the state variable (Condition 3). Finally, we require that the buyer

does not have a profitable deviation from W . To do so, we must articulate what the buyer

would earn following a (deviant) offer, which, of course, depends on how the seller would

respond. To avoid the aforementioned existence issues, these potential deviations and the

seller’s response to them are handled simultaneously in Condition 4.5

The Seller’s Problem For a given offer process, W , adapted to {Ht}, the seller faces a

stopping problem: when (if ever) to accept the buyer’s offer. A pure strategy for the type-θ

seller is then a stopping time τθ(ω) : Ω→ R+ ∪ {∞} of the filtration {Ht}, where ω denotes

an arbitrarily element of Ω. Let T be the set of all such stopping times. The type-θ seller’s

stopping problem is:

sup
τ∈T

Eθ
[
e−rτ (Wτ −Kθ)

]
. (SPθ)

A mixed strategy for the seller is a distribution over T , which can be represented by the CDF

it endows over the type-θ seller’s acceptance time for each sample path of news, denoted Sθ.6

Let Sθ = supp(Sθ). We say that Sθ solves (SPθ) if all τ ∈ Sθ solve (SPθ).

Condition 1 (Seller Optimality). The seller’s strategy, Sθ, solves (SPθ).

Consistent Beliefs At any time t, if trade has not yet occurred, the buyer assigns a

probability, Pt ∈ [0, 1], to θ = H. Analytically, it is convenient to track the belief in terms of

its log-likelihood ratio, denoted Zt ≡ ln
(

Pt
1−Pt

)
∈ R (i.e., the extended real numbers). This

transformation from belief as a probability to a log-likelihood ratio is injective, and therefore

without loss.

The buyer’s belief at time t is conditioned on the history of news and the fact that the

seller has rejected all past offers. It will be convenient to separate these two sources of

5The same existence issues arise in DG12, and are handled with the same approach: The equilibrium con-
cept there does not formally specify how a seller reacts to a deviant offer, but rather (given the competitive-
buyer environment) imposes a Zero Profit and No Deals condition to ensure no buyer can profitably deviate.

6Formally, Sθ = {Sθt , 0 ≤ t ≤ ∞} is a stochastic process that is i) adapted to {Ht}, ii) right-continuous,
and iii) satisfies 0 ≤ Sθt ≤ Sθt′ ≤ 1 for all t ≤ t′. Sθ(ω) is the CDF over the type-θ seller’s acceptance time
on R+ ∪ {∞} along the sample path X(ω, θ).
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information. Let f θt be the density of Xt conditional on θ, which is normally distributed

with mean µθt and variance σ2t.7 Let Sθt− ≡ lims↑t S
θ
s (which is well defined for t > 0 given

that Sθ is bounded and non-decreasing), and specify that Sθ0− = 0. The belief “at time t”

should be interpreted to mean before observing the seller’s decision at time t, which is why

left limits are appropriate. If SLt− · SHt− < 1 (i.e., given the history at time t, there is positive

probability that the seller has not yet accepted an offer), then the probability the buyer

assigns to θ = H follows from Bayes Rule as

P0f
H
t (Xt)(1− SHt−)

P0fHt (Xt)(1− SHt−) + (1− P0)fLt (Xt)(1− SLt−)
. (2)

Taking the log-likelihood ratio of (2) results in

Zt = ln

(
P0

1− P0

)
+ ln

(
fHt (Xt)

fLt (Xt)

)
︸ ︷︷ ︸

Ẑt

+ ln

(
1− SHt−
1− SLt−

)
.︸ ︷︷ ︸

Qt

(3)

As seen in (3), working in log-likelihood space enables us to represent Bayesian updating as

a linear process, and the buyer’s belief as the sum of two components, Z = Ẑ + Q. Notice

that the two component processes separate the two sources of information to the buyer. Ẑt

is the belief for a Bayesian who updates only based on news, {Xs : 0 ≤ s ≤ t}, starting

from Ẑ0 = Z0 = ln
(

P0

1−P0

)
.8 Q is the stochastic process that keeps track of the information

conveyed in equilibrium by the fact that the seller has rejected all past offers.

Condition 2 (Belief Consistency). For all t such that SLt− · SHt− < 1, Zt is given by (3).

Stationarity In keeping with the literature, we focus on stationary equilibria, using the

uninformed party’s belief as the state variable.9 We will use z when referring to the state

variable as opposed to the stochastic process Z (i.e., if Zt = z, then the game is “in state z,

at time t”).10

Condition 3 (Stationarity). The buyer’s offer in state z is given by W (z), where W : R→ R
is a Borel-measurable function, and Z is a time-homogenous Ht-Markov process.

7Let fH0 = fL0 be the Dirac delta function.
8That Xt is a sufficient statistic for the entire path of news in computing Ẑt follows from Girsanov’s

theorem upon observing that the Radon-Nikodym derivative for a change in the measure over paths of
{Xs : 0 ≤ s ≤ t} conditional on θ = H to the measure over paths conditional on θ = L depends only on Xt.

9DL06 show that in discrete time, and without news, stationarity is a feature of all sequential equilibria
given our assumption of common knowledge of strict gains from trade.

10Degenerate beliefs z = ±∞ (i.e., p = 0, 1), are never reached in equilibrium. Any reference to a generic
state z should be interpreted as z ∈ R unless otherwise indicated.
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Our stationarity condition requires that both the current offer and the evolution of the

belief process depend only on the current belief. While it is conventional to define station-

arity as a restriction on strategies, which then has implications for beliefs through the Belief

Consistency condition, Condition 3 is easier to digest. An alternative condition for Station-

arity would replace the restriction on Z with a more cumbersome, but equivalent, restriction

on seller strategies.

Remark 1. We have abused notation by using W to denote both the (arbitrary) offer process

and the (stationary) offer function. Henceforth, we will use W only in reference to the latter.

Given Stationarity, the value functions for each player depend only on the current state.

Let Fθ(z) denote the expected payoff for the type-θ seller given state z. That is, for any

τ ∈ Sθ

Fθ(z) ≡ Eθz
[
e−rτ (W (Zτ )−Kθ)

]
,

where Eθz is the expectation with respect to the probability law of the process Z starting

from Z0 = z and conditional on θ, which we denote by Qθz. Similarly, let FB(z) denote the

expected payoff to the seller in any given state z:

FB(z) ≡ (1− p(z))ELz
[ ∫ ∞

0

e−rt(VL −W (Zt))dS
L
t−

]
+p(z)EHz

[∫ ∞
0

e−rt(VH −W (Zt))dS
H
t−

]
,

(4)

where p(z) ≡ ez

1+ez
.

The Buyer’s Problem In any state z, the buyer has essentially three options: (i) she can

make an offer that will be accepted by both types with probability one; (ii) she can make

an offer that will be rejected by the high type, but has positive probability of acceptance by

the low type; or (iii) she can make a non-serious offer that both types will reject and wait

for more news. Corresponding to each of these options, there is a variational inequality that

must hold to ensure that a profitable deviation from the buyer’s equilibrium strategy does

not exist.

For (i), we posit that if the buyer ever offers w ≥ KH , then both types accept with

probability one. This property is motivated by the fact that the buyer makes all the offers

and is straightforward to establish in any discrete-time analog.11 Clearly, it is suboptimal to

11See Fudenberg and Tirole (1991, pp. 409). Ortner (2017) imposes a similar condition in a continuous-
time bargaining model.
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ever offer more than KH . So, letting V (z) ≡ Ez[Vθ], the corresponding inequality is

FB(z) ≥ V (z)−KH . (B.1)

For (ii), suppose that in state z the buyer makes an offer W (z) = w that is rejected by

the high type, but has positive probability ρ ∈ (0, 1) of being accepted by the low type.12

Then, by Belief Consistency, the post-rejection belief, z′, must satisfy

p(z′) =
p(z)

p(z) + (1− p(z))(1− ρ)
, implying ρ =

p(z′)− p(z)

p(z′)(1− p(z))
.

The unconditional probability that the offer is accepted is therefore (1− p(z))ρ = p(z′)−p(z)
p(z′)

.

If the offer is rejected, by Stationarity the buyer earns FB(z′). Hence the buyer’s expected

payoff starting in state z is

FB(z) =
p(z′)− p(z)

p(z′)
(VL − w) +

p(z)

p(z′)
FB(z′). (5)

Additionally, by Seller Optimality, the low type’s willingness to mix requires FL(z′) = w,

as he must be indifferent between accepting the offer and getting his continuation payoff by

rejecting.

To ensure that the buyer cannot profitably deviate, we require that she optimize over all

feasible (w, z′) that are consistent with each other in the manner just described. Thus, we

let B(z) ≡ {(w, z′) : z′ ≥ z, FL(z′) = w} denote the feasible set starting from state z and

require that

FB(z) ≥ max
(w,z′)∈B(z)

{
p(z′)− p(z)

p(z′)
(VL − w) +

p(z)

p(z′)
FB(z′)

}
, (B.2)

which is reminiscent of the familiar dynamic programming equation in earlier bargaining

models with one-sided private information, where the uninformed party trades off finer

screening and delay (see e.g., Ausubel et al., 2002, p. 1913). The requirement (B.2) is

easiest to explain when FL is continuous and strictly increasing below KH . In this case,

for any offer w ∈ [FL(z), KH) there is a unique z′ ≥ z such that the low type is indifferent

between accepting w or getting a continuation payoff of FL(z′). Therefore, if such a w is

offered, the high type must reject and the low type must accept with the probability such

that the buyer’s Bayesian consistent belief following a rejection is z′, which yields the buyer

12To see that ρmust be strictly less than 1, suppose it were not. Then rejecting would perfectly demonstrate
that θ = H, and the buyer would offer KH immediately after. However, then the low type would do better
to reject w and earn KH .

10



a payoff equal to the term inside the brackets on the RHS of (B.2).13

Conditions (B.1) and (B.2) require that the buyer optimally uses her ability to make

offers. In the absence of news, these conditions would be sufficient to ensure the buyer has

no incentive to deviate. However, because of news, the buyer also has the option to wait

and learn. The next condition requires that the buyer makes optimal use of this option as

well. That is, corresponding to the buyer’s third option—making an offer that is sure to be

rejected and waiting for news—we require that for all z and τ ∈ T ,

FB(z) ≥ Ez[e−rτFB(Ẑτ )], (B.3)

where, recall, Ẑ is the belief process updating solely based on revelation of the news. If

there was no news, Ẑt would be constant over time and therefore Ez[FB(Ẑτ )] = FB(z) for

any τ , meaning that (B.3) would be satisfied for any non-negative FB. However, with news,

the condition has important additional implications. For instance, any upward kink in the

buyer’s value function violates (B.3), since the buyer could improve her payoff by waiting in

a neighborhood around the kink.

Condition 4 (Buyer Optimality). For any z, FB as defined by (4) satisfies (B.1)-(B.3).

Definition 2. An equilibrium of the model is a quadruple (W,SL, SH , Z) that satisfies

Conditions 1-4.

Remark 2 (Commitment Solution). Because the buyer cannot commit to future offers, she

takes the seller’s value function as given. If the buyer could commit to a (news-dependent)

path of offers, she would internalize the effect of her offers on the seller’s value function.

As a result, the commitment solution involves immediate trade with the low type at a price

w0 ∈ (KL, VL) and then a non-deterministic amount of delay (until Ẑ crosses a threshold)

at which point KH is offered and the high type trades.

13If FL is discontinuous, then one might be concerned that (B.2) is too weak as it says nothing about a
deviation to w for which F−1

L (w) = ∅. Yet, this concern should be assuaged by the fact that we will obtain
a unique equilibrium (which also features a continuous FL). If instead, FL were not strictly monotone below
KH , then there could exist w for which multiple values of z′ ≥ z satisfy FL(z′) = w. In such cases, (B.2)
requires that the buyer’s payoff cannot be improved when the seller’s reaction to such an offer is the most
buyer-favorable one in the feasible set. If this “most-favorable” feature was relaxed, our equilibrium remains
an equilibrium. However, under the relaxed condition, we have only been able to establish uniqueness under
the additional requirement that the seller’s value function be nondecreasing (i.e., “good news” about θ is never
harmful to the seller—motivated in DG12 as a condition that ensures the seller does not have an incentive to
“sabotage” himself). Because the relaxed condition is more cumbersome and requires introducing additional
equilibirum objects, we have adopted the more streamlined requirement of (B.2).
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Remark 3 (Discrete Time). Consider the discrete-time analog of the model in which the

buyer makes offers only at times t ∈ {0,∆, 2∆, . . .}. It is straightforward to show that the

discrete-time versions of Conditions 1-3, as well as (B.1) and (B.3), are necessary properties

of any stationary PBE of the discrete-time game. The necessity of the discrete-time version

of (B.2) can be established under the additional requirement that the seller’s value function

be nondecreasing (i.e., “good news” about θ is never harmful to the seller), which ensures

the seller does not have an incentive to “sabotage” himself, as discussed in footnote 13.

3 Equilibrium

The equilibrium of the game is characterized by a belief threshold, β, and, for all z < β,

a rate of trade with the low type. Specifically, when z ≥ β, the buyer offers W (z) = KH ,

which is accepted with probability one and hence trade is immediate. When z < β, the

buyer offers some W (z) < KH , which the high type rejects. The low type accepts at a state-

specific flow rate (i.e., proportional to time), meaning rejection is a (weakly) positive signal

that θ = H. Therefore, the buyer’s belief conditional on rejection, Z, has additional upward

drift, denoted q(z) ≥ 0. The next definition gives a formal description of the equilibrium

candidate parameterized by (β, q).

Definition 3. For β ∈ R and measurable function q : (−∞, β)→ R+, let T (β) ≡ inf {t : Zt ≥ β}
and Σ(β, q) be the strategy profile and belief process:

Zt =

{
Ẑt +

∫ t
0
q(Zs)ds if t ≤ T (β)

arbitrary otherwise14
(6)

SHt =

{
0 if t < T (β)

1 otherwise
(7)

SLt =

{
1− e−

∫ t
0 q(Zs)ds if t < T (β)

1 otherwise
(8)

W (z) =

{
KH if z ≥ β

ELz [e−rT (β)]KH if z < β
(9)

In a candidate Σ(β, q) equilibrium, the high-type seller plays a pure strategy τH = T (β)

14According to Σ(β, q), if t > T (β), trade should commence by time t with probability one. Hence, the
evolution of Z—the belief conditional on rejection—in this event is the specification of the buyer’s off-path
beliefs. Because the buyer never offers more than KH , no matter how high Z becomes, the specification of
these off-path belief has no bearing on our results.
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whereas the low-type mixes over stopping times in T .15 The offer in each state z < β equals

the low-type seller’s continuation value. If q(z) > 0, the equivalency is necessary, as the low

type is mixing and must be indifferent. If q(z) = 0, the low type weakly prefers to reject, in

which case our specification of offers in (9) is without loss. It is therefore immediate that in

any Σ(β, q) candidate, FL is strictly increasing for z < β.

Theorem 1. There exists a unique pair (β, q) such that Σ(β, q) is an equilibrium.

Theorem 1 is established by construction. In Sections 3.1 and 3.2, we derive necessary

conditions of any Σ-equilibrium and identify a unique candidate (β, q)-pair. Verifying that

this candidate is indeed an equilibrium is straightforward and is therefore relegated to the

appendix. Before proceeding with the construction, we state our second main result.

Theorem 2. The equilibrium in Theorem 1 is the unique equilibrium.

The two key features of a Σ(β, q) profile are (1) a threshold β above which trade takes

place immediately at a price of KH , and (2) for z < β, trade takes place at a rate pro-

portional to time. It is not hard to prove that (1) must be true of any equilibrium, but

proving that (2) must hold in any equilibrium requires more work. We do so by employing

Lesbesgue’s Decomposition Theorem: since Q must be monotonic, it can be decomposed into

an absolutely continuous component and a singular component. Any singular component

corresponds to trade with the low type at a rate “faster” than dt, which can take the form

of an atom (i.e., a jumps in Z) or local time (e.g., a reflecting boundary). We then argue

that a singular component cannot be sustained in equilibrium. Appendix A.2 contains the

formal proof.

Although some of the details are technical, the intuition for this argument is actually

quite simple. If it is part of an equilibrium, trading with the low type at a rate faster than

dt must cease at some state α < β, whereat the low type’s value function must have a right

derivative of zero. But F ′L(α+) = 0 means the low type is no more expensive to trade with

just above α. Hence, the buyer has incentive to deviate by increasing her offer in states just

above α in order to continue trading at a rate faster than dt—meaning α cannot be the state

at which this behavior ceases—producing a contradiction.

15While this mixing may appear rather involved, it can be accomplished by drawing a single random
variable at t = 0. For instance, let ν ∼ exponential(1), independent from (B, θ). Let τ̂ = inf{t ≥ 0 : ν ≤∫ t

0
q(Zs)ds}. Then τL ≡ τ̂ ∧ T (β) is distributed according to SL. Notice that, although τL /∈ T , SLt is

Ht-measurable, since it depends only on the path of Z up to time t.
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3.1 Necessary Conditions: Determining β and FB

For any z ≥ β, the buyer’s value is FB(z) = V (z)−KH . For z < β, Z evolves according to

dZt = dẐt + q(Zt)dt =
φ

σ

(
dXt −

µH + µL
2

dt

)
+ q(Zt)dt,

and the buyer’s value function is given by

FB(z) ≈ (VL − FL(z))(1− p(z))q(z)dt+ (1− (1− p(z))q(z)dt) e−rdtEz[FB(z + dZ)].

Applying Ito’s formula to FB, using the law of motion for Z, and taking the limit as dt→ 0

yields

rFB(z) = q(z)(1− p(z))(VL − FL(z)− FB(z))

+

(
φ2

2
(2p(z)− 1) + q(z)

)
F ′B(z) +

φ2

2
F ′′B(z). (10)

Collecting the q terms gives

rFB(z) =
φ2

2
(2p(z)− 1)F ′B(z) +

φ2

2
F ′′B(z)︸ ︷︷ ︸

Evolution due to news

+ q(z)

(
(1− p(z))

(
VL − FL(z)− FB(z)

)
+ F ′B(z)

)
︸ ︷︷ ︸

Γ(z)≡Net benefit of screening at z

. (11)

The first term on the right-hand side of (11) is the evolution of the buyer’s value arising

from the news. The second term is the additional value she derives from the flow rate of

trade with the low type, which is the product of the trade rate, q(z), and the net benefit of

this screening, termed Γ(z).

For a useful alternative way to explain Γ, recall the FL must be strictly increasing and

is therefore invertible below β. Thus, much like the problem of a monopolist facing an

invertible demand curve, it is formally equivalent to express the buyer’s problem in terms of

choosing quantities (or post-rejection beliefs) instead of prices. To that end, let J(z, z′) be

the buyer’s payoff from inducing a post-rejection belief of z′ starting from state z by offering

w = FL(z′).

J(z, z′) ≡ p(z′)− p(z)

p(z′)︸ ︷︷ ︸
Prob. offer
accepted

(VL − FL(z′))︸ ︷︷ ︸
Payoff if
accepted

+
p(z)

p(z′)︸ ︷︷ ︸
Prob.

rejected

FB(z′).︸ ︷︷ ︸
Continuation

Payoff
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Notice that

Γ(z) =
∂

∂z′
J(z, z′)

∣∣
z′=z

and therefore Γ(z) can be interpreted as the net benefit to the buyer from increasing the

rate of trade with the low type.

In a Σ-equilibrium the belief does not jump, meaning w = FL(z) must be weakly optimal.

The necessary first-order condition is16

Γ(z) ≤ 0. (12)

But if Γ(z) < 0 then, the buyer strictly prefers to wait for news (i.e., make a non-serious

offer that is rejected with probability one), which implies that q(z) = 0. In either case,

q(z)Γ(z) = 0. (13)

Therefore, (11) simplifies to

rFB(z) =
φ2

2
(2p(z)− 1)F ′B(z) +

φ2

2
F ′′B(z). (14)

The ODE has unique closed-form solution

FB(z) =
1

1 + ez
C1e

u1z +
1

1 + ez
C2e

u2z, (15)

where (u1, u2) = 1
2
(1 ±

√
1 + 8r/φ2) and C1, C2 are constants yet to be determined. The

boundary conditions are:

lim
z→−∞

|FB(z)| <∞ (16)

FB(β) = V (β)−KH . (17)

Because the buyer’s payoff is uniformly bounded between 0 and VH , (16) must hold (which

implies C2 = 0). When Zt hits β, trade is immediate regardless of θ. Hence, (17) is the

required value-matching condition. Finally, smooth pasting of FB at β is also required:

F ′B(β) = V ′(β). (18)

To see why smooth pasting is required, consider the buyer at z = β. Given (17), if F ′B(β−) >

16In fact, (12) is a more general implication of Buyer Optimality and must hold even if the belief does
jump at z—see Lemma A.3, used in the proof of equilibrium uniqueness (Theorem 2).
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V ′(β), then there exists an ε such that FB(β − ε) < V (β − ε) − KH , meaning the buyer

would do better to trade at KH immediately, in violation of (B.1). On the other hand, if

F ′B(β−) < V ′(β), then a convex combination of FB(β − ε) and V (β + ε) − KH is strictly

greater then FB(β) = V (β) − KH . This implies that the buyer can improve her payoff by

waiting for all z ∈ [β, β + δ) for sufficiently small δ, in violation of (B.3).

These necessary conditions yield a unique solution for β and FB, as we characterize in

Lemma 1. To do so, let z ≡ ln
(
KH−VL
VH−KH

)
(i.e., V (z) = KH).

Lemma 1. If Σ(β, q) is an equilibrium, then

(i) β = β∗ ≡ z + ln
(

u1

u1−1

)
,

(ii) For all z ≥ β, FB(z) = V (z)−KH , and

(iii) For all z < β, FB(z) is given by (15), with C1 = C∗1 ≡ KH−VL
u1−1

(
u1

u1−1
KH−VL
VH−KH

)−u1

and

C2 = C∗2 ≡ 0.

Notice that β > z, which reflects the buyer’s option to delay trade and learn from news.

That is, offering KH at all z ∈ (z, β) is suboptimal because it would imply a kink in the

buyer’s value function, violating the smooth-pasting condition required for optimal stopping.

3.2 Necessary Conditions: Determining q and FL

In the candidate equilibrium, the low type weakly prefers to reject W (z) when z < β. Hence,

his equilibrium payoff must be equal to the payoff he would obtain by always rejecting in

these states, and waiting for KH to be offered: FL(z) = ELz [e−rT (β)]KH . So, for z ≥ β,

FL(z) = KH . From the low type’s perspective, for z < β, Z evolves according to

dZt =

(
q(Zt)−

φ2

2

)
dt+ φdBt

and therefore FL satisfies

rFL(z) =

(
q(z)− φ2

2

)
F ′L(z) +

φ2

2
F ′′L(z). (19)

Solving for q(z) gives that

q(z) =
rFL(z) + φ2

2
F ′L(z)− φ2

2
F ′′L(z)

F ′L(z)
. (20)
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Now, recall from (12) that Γ(z) ≤ 0, meaning the buyer weakly prefers not to trade faster

with the low type. The next lemma states that, in fact, the buyer must be indifferent over

all rates of trade.

Lemma 2. If Σ(β, q) is an equilibrium, then for all z < β

Γ(z) = 0. (21)

To understand why, notice that if Γ(z) < 0, then by (13), q(z) = 0. Without any

additional drift, Zt takes longer to reach β, reducing the low type’s continuation value,

which (we just argued) coincides with FL. This, in turn, raises Γ(z) and, as we demonstrate

in the proof, leads to a violation of (12). The interpretation is that, if trade ever came to a

halt, the low type’s continuation value would become so low that he would be too cheap for

the buyer to resist trading with him faster.

Solving (21) for FL and using Lemma 1’s characterization of FB, gives that, for all z < β,

FL(z) = (1− p(z))−1F ′B(z) + VL − FB(z) (22)

= VL + C∗1(u1 − 1)eu1z (23)

Substituting (23) into (20) gives

q(z) =
rVLe

−u1z

C∗1u1(u1 − 1)
=
φ2VL
2C∗1

e−u1z > 0. (24)

Lemma 3. If Σ(β∗, q) is an equilibrium, then for all z < β∗, FL(z) is given by (23) and

q(z) is given by (24).

Henceforth, we use (β, q) in reference to the pair that characterizes the unique equilibrium

of the game. Figure 2 depicts the equilibrium buyer’s value function, low-type seller’s value

function (which is equal to the buyer’s offer), and rate of trade for beliefs below β.

4 Bargaining Dynamics

Having constructed the (unique) equilibrium of the model, we now examine several of the

implications.
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(a) Buyer Payoff (FB) (b) Low Type Payoff and Offer
(FL = W )

(c) Rate of Trade (q)

Figure 2: Illustration of the equilibrium payoffs and the rate of trade as functions of the state
variable, p(z). In all figures, the x-axis is the unit interval, which corresponding to the buyer’s
belief as a probability. Element of this space are denoted by english letters (e.g., b = p(β)).

4.1 Who Benefits from the Negotiation?

One interesting feature of the equilibrium is that, although the buyer engages in a nego-

tiation, she does not actually benefit from her ability to do so. To formalize this finding,

consider an alternative version of the model in which the buyer cannot negotiate the price.

Rather, the price is exogenously fixed at KH (the lowest price that a seller would surely

accept). The buyer still observes Ẑ, but the only decision she makes is when (if ever) to

complete the transaction. We refer to this auxiliary model as the due diligence problem.17

The due diligence problem reduces to a standard stopping problem for the buyer. Her

belief updates only based on news, Z = Ẑ, and stopping corresponds to a payoff of V (z)−KH .

Hence, she chooses a stopping time, T , to maximize Ez[e−rT (V (ẐT )−KH)].

It is not difficult to establish that the unique solution of the due diligence problem is

a threshold policy: Td = inf{t : Zt ≥ βd}. Further, below βd, the buyer’s value function

satisfies the ODE in (14). Finally, the value-matching and smooth-pasting conditions (16)-

(18) are also required. Therefore, βd = β and we have the following result.

Proposition 1. In the unique equilibrium of the (true) bargaining game:

1. The buyer’s payoff is identical to her payoff in the due diligence problem.

2. The low-type seller has a higher payoff than he would under the buyer’s optimal policy

in the due diligence problem.

17It is not hard to provide conditions under which KH is the optimal first-stage offer in an extension of
the due diligence problem where the buyer first makes a take-it-or-leave-it offer, which, if accepted, endows
the buyer with the right to conduct due diligence and a perpetual option to purchase at the accepted offer
price. In particular, the optimal offer in the first-stage is KH provided that FB(Z0) ≥ (1− P0)(VL −KL).
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Intuition suggests that the buyer should make use of the news in two ways: (i) to ensure

she is sufficiently confident that θ = H, before offering the price needed to compensate a

high-type seller, and (ii) to extract value out of the low-type seller with low prices if she

becomes sufficiently confident that θ = L. Our results are consistent with (i), but not (ii).

Even though the buyer does negotiate with the seller by making offers below KH and there is

probability that such a price will be accepted, the buyer’s equilibrium payoff, FB is identical

to what she would garner if she had no ability to screen using prices. This can be viewed as

the manifestation of the “Coasian” force in our model.

Starting from a low belief, the buyer would like to be able commit to a low offer for

at least some discrete interval of time. The rejection of this offer would, however, increase

the buyer’s belief at which point she would again be tempted to “experiment” by offering

a price that may be accepted by the low type as described above. Without any ability to

commit, she will indeed make this offer, which the low type foresees. This raises low-type

continuation value, which coincides with price. See Section 7 for further discussion on the

relation to the Coase Conjecture.

An immediate corollary of Proposition 1 is that total surplus is higher when the buyer

can negotiate the price. However, the additional surplus is captured entirely by the seller

despite the fact that the buyer makes all the offers.

4.2 Experimentation

Another feature of the equilibrium is that for all z < β, the buyer makes offers that are both

strictly greater than VL and only accepted by the low type. Therefore, the buyer’s realized

payoff is negative whenever such an offer is accepted (unlike in DL06 and FS10).

Property 1. For all z < β, W (z) > VL and q(z) > 0.

Making these relatively high offers can be rationalized as a form of costly experimen-

tation. The buyer’s value function is strictly increasing, and therefore she values pushing

the belief up. Making an offer that the low type may accept, generates a potential benefit

(rejection raises the belief and, therefore, the buyer’s expected payoff), but also a poten-

tial cost (acceptance means the buyer overpays, and earns a negative payoff). As shown in

Proposition 1, these costs and benefits perfectly cancel each other out as the buyer exhausts

all of the potential gains from experimentation leaving her with precisely the same payoff

she would obtain if she were unable to experiment through price offers.

As the buyer becomes certain she is facing a low type, the implications of the buyer’s

willingness to engage in costly experimentation are even more extreme.
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Property 2. As z → −∞ (i.e., p→ 0):

(i) FB(z)→ 0,

(ii) FL(z),W (z)→ VL,

(iii) q(z)→ +∞.

The buyer’s value goes to zero as the probability that θ = L tends to 1. However, this

is not due to destruction of total surplus through inefficient delay. In fact, the rate of trade

with the low type grows arbitrarily large, and the low-type seller’s value tends to VL as

z → −∞. Hence, trade is fully efficient in this limit (see Property 3 below), but the entire

surplus is captured by the low type.

4.3 Efficiency

In the absence of trade, each player gets a payoff of zero. The (expected) surplus obtained

by the seller’s side of the game in state z is given by

ΠS(z) ≡ (1− p(z))FL(z) + p(z)FH(z).

The buyer’s suplus in state z is simply FB(z). So, total surplus realized in state z is then

given by Π(z) ≡ ΠS(z) +FB(z). Due to common knowledge of gains from trade, the efficient

outcome is to trade immediately, resulting in a total potential (or first-best) surplus of

ΠFB(z) ≡ (1− p(z))(VL −KL) + p(z)(VH −KH).

Hence, ΠFB(z) − Π(z) ≥ 0 and any strictly positive difference is the efficiency loss due to

expected delays in trade. We define the normalized loss in efficiency as a function of z by

L(z) ≡ ΠFB(z)− Π(z)

ΠFB(z)
.

Property 3. L(z) = 0 if and only if z ≥ β, but L(z)→ 0 as z → −∞.
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5 Buyer Competition

In this section, we explore the effect of competition among buyers by contrasting our findings

with DG12, which analyzes an analogous setting except with perfectly competitive buyers.18

In most economic settings, one expects a more competitive market to lead to more efficient

outcomes. However, when the uninformed side of the market can learn from news, we will

see that introducing competition can have exactly the opposite effect.

By way of terminology, we refer to the competitive outcome as the equilibrium with mul-

tiple competing buyers from DG12, and the bilateral outcome as the equilibrium with a single

buyer as characterized in Section 3. Notionally, we use a subscript s ∈ {b(ilateral), c(ompetitive)}
on objects when referencing the respective outcomes.

When buyers are competitive and the SLC holds, DG12 shows that the unique (station-

ary) equilibrium is characterized by a pair of beliefs αc < βc and the following three regions.

For z ≥ βc, trade takes place immediately at a price V (z). For z < αc, buyers offer VL, the

high type rejects and the low type mixes. Conditional on a rejection at some z < αc, buyers’

belief jumps to αc. For all z ∈ (αc, βc) trade occurs with probability zero and the buyers’

beliefs evolve solely due to news. Finally, at z = αc, the low type trades at an intensity

proportional to the local time of the belief process.

In both settings, equilibrium involves a threshold belief above which trade is fully effi-

cient and below which there is positive probability of delay. However, unlike the smooth and

strictly positive trading rate in the bilateral outcome, the trading intensity below the thresh-

old in the competitive outcome is “lumpy” (i.e., either zero or singular). Given the upper

threshold determines the set of states in which the outcome is fully efficient, the following

proposition has important efficiency implications.

Proposition 2. βc > βb.

The intuition behind this result is the following. In the competitive outcome, buyers

are willing to offer V (z) at any z such that the high-type seller is willing to accept it.

Thus, it is the high-type seller that decides when to “stop,” which nets him V (z) − KH .

In the bilateral outcome, it is the buyer who decides when to “stop” (i.e., offer KH) which

nets her V (z) − KH .19 While the net payoff to the player who determines when to stop

in the respective settings is the same, they have different expectations about the evolution

18As described in footnote 5, instead of our Buyer Optimality condition, DG12 imposes a Zero Profit and
No Deals condition. The first ensures that any trade that takes place earns zero expected profit for a buyer.
The second ensures that when trade does not take place, there does not exist an offer that a buyer could
make and earn positive profit. They also impose a modest refinement on off-path beliefs.

19Recall that the stopping threshold, βb, is the same as in the solution to the due diligence problem (the
buyer’s stopping problem in which she is unable to screen with prices).
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(a) Efficiency Loss (L) (b) Low Type Payoff (FL) (c) Payoff Differential (FH − FL)

Figure 3: Comparison across the bilateral and competitive outcomes.

of Ẑ. In particular, the drift of Ẑ under the high-type seller’s filtration is strictly greater

than under the buyer’s filtration. Hence, the solution to the high-type’s stopping problem

involves waiting longer (i.e., a higher threshold). The intuition is further strengthened by

the competitive outcome’s lower boundary, αc, at which the low-type seller “pushes” the

belief process upward, making the high-type even more willing to wait.

Clearly, Proposition 2 implies there exists a set of states (i.e., z ∈ (βb, βc)) such that

the bilateral outcome is fully efficient and the competitive outcome is not. By continuity,

the bilateral outcome remains more efficient just below βb. However, for low z the ranking

reverses and the competitive outcome is more efficient as can be seen in Figure 3(a) and in

the following proposition.

Proposition 3. There exist z1 ≤ z2, both in (−∞, βb), such that,

(i) Lc(z) ≥ Lb(z) for all z > z2 where the inequality is strict for all z ∈ (z2, βc), and

(ii) Lc(z) < Lb(z) for all z < z1.

Intuitively, when the belief is low, trade is more efficient in the competitive outcome

because the low type is trading more rapidly (i.e., with an atom compared to with a rate in

the bilateral outcome), and when z is low it is the low type’s trading behavior that determines

efficiency.20

In terms of player welfare, the comparisons for the both the buyer and the high-type seller

are trivial. The buyer earns positive surplus (for all z) in the bilateral outcome, and zero

in the competitive one. Conversely, the high-type seller earns zero surplus in the bilateral

outcome (since the price never exceeds KH), but earns positive surplus in the competitive

20In Figure 3(a), z1 = z2. This feature appears to be general, but is without a formal proof.
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outcome. The comparison for the low-type seller is more nuanced. When the belief is low, he

is better off in the bilateral outcome than in the competitive, but the reverse when the belief

is high, as seen in Figure 3(b). As discussed in Section 4, in the bilateral setting, the buyer

offers prices above VL as a form of experimentation, which benefits the low-type seller. There

is no scope for costly experimentation in the competitive setting, as buyer-profits are driven

to zero. In contrast, when the belief is high, the low-type seller enjoys buyer competition

because it raises the price to V (z) instead of only to KH .

Finally, Figure 3(c) illustrates that the difference in expected payoffs of the high-type and

low-type seller is always greater in the competitive outcome. Thus, while both efficiency and

the low-type seller payoff can be higher in the bilateral outcome, the (unmodeled) ex-ante

incentive to invest in quality is unambiguously stronger when the seller faces competition.

6 News Quality

In this section we investigate the effect of news quality. First, we explore how an increase in

news quality affects equilibrium play and payoffs. Then we take the limit as news becomes

arbitrarily informative (i.e., φ→∞) and arbitrarily noisy (i.e., φ→ 0). Finally, we compare

the φ→ 0 limit to a model with no news analyzed by DL06.

6.1 An Increase in News Quality

We first state the result and then provide intuition.

Proposition 4. As the quality of news, φ, increases:

(i) β increases.

(ii) The rate of trade, q, decreases for z < β− 2u1−1
u1(u1−1)

but increases for z ∈ (β− 2u1−1
u1(u1−1)

, β).

(iii) The buyer’s payoff increases for all z < β.

(iv) The low-type seller’s payoff increases for z < β− 1
u1−1

but decreases for z ∈ (β− 1
u1−1

, β).

(v) Total surplus increases for z < β − 1
u1

but decreases for z ∈ (β − 1
u1
, β).

As the quality of news increases, the buyer learns about the seller’s type faster, and

therefore finds it optimal to choose a higher belief threshold before offering KH . Thus, both

β and FB increase with φ. These findings are illustrated in Figure 4(a).
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(a) Buyer Payoff (FB) (b) Low Type Payoff (FL) (c) Efficiency loss (L)

Figure 4: The effect of news quality on equilibrium payoffs and efficiency.

The effect of news quality on FL is more subtle because there are two opposing forces.

To understand them, recall that the low type’s equilibrium payoff is equal to the expected

discounted value of waiting until T (β) and transacting at a price of KH . Holding β and q

fixed, a higher φ means an increase in the volatility of Ẑ which reduces the expected waiting

cost and therefore increases FL.21 On the other hand, a higher β (or lower q) increases the

waiting costs, thereby decreasing FL. To see how these two forces lead to the result in (iv),

consider a discrete increase in news quality from φ0 to φ1 and therefore by (i), β0 < β1.

Clearly, the low type must be worse off with the higher news quality for z ∈ (β0, β1).

Continuity implies this ranking must persist for z just below β0. However, for low enough z,

the volatility effect dominates as illustrated in Figure 4(b).

These same opposing forces also affect the overall efficiency as illustrated in Figure 4(c).

On the one hand, a higher φ “speeds things up” and reduces L. On the other hand, because

β increases, there are states in which trade would be fully efficient under φ0, but is delayed

with positive probability under φ1. Thus, a higher φ leads to less efficient outcomes for z

near the upper threshold, while the first effect dominates and L decreases for low z.

6.2 Arbitrarily Informative News

The following proposition characterizes the limit properties of the equilibrium as news qual-

ity becomes arbitrarily high. Let
pw→ and

u→ denote pointwise and uniform convergence,

respectively.

Proposition 5. As φ→∞:

(i) β →∞.
21Higher φ also lowers the drift of Ẑ under QL, which increases L’s expected waiting cost, but this drift

effect on FL is dominated by the increase in volatility.
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(ii) q
pw→∞, but for any x > 0, q(β − x)→ rVL

KH−VL
ex.

(iii) FB
u→ p(z)(VH −KH).

(iv) FL
pw→ VL.

(v) L u→ 0.

Property (i) says that as φ→∞ the buyer waits until she is virtually sure that the seller

is a high type before offering KH . Yet, β → ∞ at a rate slow enough that this learning

happens arbitrarily quickly, delay becomes trivial, and the buyer captures all of the surplus

from trades with the high-type seller.

A surprisingly different pattern emerges conditional on the seller being a low type. In

this case, the buyer does not wait until she is virtually certain that the seller is a low type

nor does she extract all of the surplus from the low type. Instead, she trades arbitrarily

quickly with the low type (Property (ii)) at a price arbitrarily close to VL (Property (iv))

and thereby extracts none of the surplus from trades with the low-type seller. Hence, the

temptation to speed up trade with the low type overwhelms the motivation to learn about

the seller’s type, even when this learning takes place arbitrarily quickly.22

Properties (iii)-(v) are illustrated in Figure 5. The disparity between the strength of

convergence for FL and FB is due to the fact that, even for large φ, FL(z) = KH for all

z ≥ β, meaning the convergence of FL to VL is only pointwise.

(a) Buyer Payoff (FB) (b) Low Type Payoff (FL) (c) Efficiency loss (L)

Figure 5: Limiting payoffs and efficiency loss as φ→∞ and φ→ 0.

22This result may partially be attributed to the order of limits. By analyzing a continuous-time model
directly, we have implicitly taken the period length to zero first (i.e., before taking φ → ∞). If we were to
interchange the order of limits (i.e., consider a discrete-time model with news and take the limit as φ→∞
before taking the period length to zero), then it is plausible that the pattern of trade with low type would
resemble that with the high type.
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6.3 Arbitrarily Uninformative News

We now turn to the other extreme in which news tends to pure noise.

Proposition 6. As φ→ 0:

(i) β → z.

(ii) For all z < z, q(z)→∞; but q(z)→ 0.

(iii) FB
u→

{
0 if z < z

V (z)−KH if z ≥ z.

(iv) FL
pw→


VL if z < z

(1− e−1)VL + e−1KH if z = z

KH if z > z.

(v) L pw→


p(z)(VH−KH)

ΠFB(z)
if z < z

p(z)(VH−KH)−(1−p(z))e−1(KH−VL)
ΠFB(z)

if z = z

0 if z > z.

To interpret these results, it is useful to draw a comparison to DL06. For convenience,

we restate their result below using our notation.

Result (DL06, Proposition 2). Consider a two-type, discrete-time model with no news (i.e.,

φ = 0), and suppose that the SLC holds. In equilibrium, as the period length between offers

goes to zero,

(i) For all z > z, the buyer offers KH and the seller accepts w.p.1.

(ii) For z < z, the buyer makes an offer of w0 =
V 2
L

KH
. The high type rejects and the low

type mixes such that the belief is z following a rejection.

(iii) For z = z, there is delay of length 2τ , where τ satisfies VL = e−rτKH , after which the

buyer offers KH and the seller accepts w.p.1.

There are notable similarities between the result above and our findings in Proposition 6.

For z > z, the predictions are perfectly aligned; trade takes place immediately at a price

equal to the high-type’s cost. In addition, for z < z, in both settings there is a “burst” of

trade with the low type and delay ensues conditional on a rejection. The key differences are

the buyer’s offer when z < z and the amount of ensuing delay. In our case, the offer is VL

and the amount of ensuing delay is τ , whereas in DL06 the offer is w0 < VL and the amount

of ensuing delay is exactly twice as along.
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0 p 1

0

VH -KH φ = 0.1

φ → 0

DL06

(a) Buyer Payoff (FB)

0 p 1

W0

VL

KH φ = 0.1

φ → 0

DL06

(b) Low Type Payoff (FL)

0 p 1

0

0.5

1

φ = 0.1

φ → 0

DL06

(c) Efficiency loss (L)

Figure 6: Payoffs and efficiency comparison to DL06 with φ > 0 and as φ→ 0.

A surprising economic implication is that the buyer is strictly worse off for all z < z

in our limit (continuous time, φ → 0) than in that of DL06 (discrete time, φ = 0, period

length → 0). An intuition for this result is as follows. In DL06, if the buyer delays trade

(by making unacceptable offers), the belief remains constant and when the buyer’s belief is

z, the temptation to speed up trade (i.e., the Coasian force) is absent because the buyer’s

continuation value from this state is zero. Hence, in DL06, the buyer can leverage an

endogenous form of commitment power: it is both feasible and sequentially rational for the

buyer to delay trade at z and for her belief to remain constant during such a delay. This

allows her to extract more surplus from the low type in states z < z.

In contrast, with even an arbitrarily small amount of Brownian news, the buyer’s belief

will diverge from z almost surely in an arbitrarily short amount of time. That is, the buyer

cannot just “sit” at z, and make non-serious offers for any amount of time, because she

observes news and updates her belief arbitrarily quickly, which strengthens the Coasian

force, reduces her ability to extract surplus, and improves efficiency in all states z < z.

These findings are illustrated in Figure 6.

Technically, the different outcomes emerge due to a difference in the order of limits. By

modeling the game directly in continuous time, we have effectively taken the length of the

periods to zero before taking the limit as φ→ 0. Indeed, taking the period length to zero first

is necessary to understand the role of news (i.e., φ > 0) in a setting without commitment.

Whereas, the DL06 outcome would obtain if the order of limits were reversed.
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7 When the SLC Fails and the Coase Conjecture

We now turn to equilibrium when the SLC fails. In this case, the unique equilibrium outcome

involves no delay.

Theorem 3. When the SLC fails, there is a unique equilibrium. In it, W (z) = KH and

trade is immediate for all z.

One intuition for the result comes via the connection to the due diligence problem from

Section 4. Recall that the buyer’s equilibrium payoff (in the true game) coincides with her

payoff in the due diligence problem. Without the SLC, however, the solution to the due

diligence problem is to “stop” (i.e., trade at price KH) immediately. Why? The buyer’s

reward from stopping in the due diligence problem is strictly positive and linear in her belief

p ∈ (0, 1), which is a martingale. Since she discounts future payoffs, she can do no better

than stopping immediately.

Strikingly, Theorem 3 holds regardless of the quality of the news process, φ. This can be

viewed as an extension of the Coase conjecture. Interpreted within our setting, Coase (1972)

conjectured that the buyer’s competition with her future self would lead to immediate trade

at a price KH when there is no news, φ = 0, and independent values, VH = VL > KH (which

implies the SLC fails). Our results show that, without the SLC, the Coasian force swamps

the incentive to delay and learn from Brownian news.23

However, this result also brings a subtlety to the interpretation of the Coasian force.

Often the force is interpreted as: competition with the future self simulates competition from

other buyers, leading to efficient trade. With news however, DG12 shows that the outcome

with competitive buyers features periods of delay, and therefore is not efficient, even when

the SLC fails (Proposition 5.3 therein). Moreover, as Section 5 makes clear, competition

with the future self does not simulate intra-temporal competition in the presence of news.

We believe this suggests a different interpretation of the Coasian force. Namely, the

inability to commit to prices means that the buyer (i.e., the uninformed party) gains nothing

from the ability to screen using prices. In Coase’s setting (independent values, no news), it

then follows that trade will be immediate and efficient, just as it would be if competitive

buyers were introduced. In general however, the inability to profit by screening through

prices need not lead to a pattern of trade resembling the pattern from the competitive-

buyer environment. In fact, with news the bargaining outcome is more efficient than the

23DL06 show that the Coase conjecture holds for the interdependent case (again, without news) if the
Static Incentive Constraint is satisfied (i.e., KH ≤ E[Vθ|P0]). FS10 show delay can arise if the news instead
has the potential to perfectly reveal θ in finite time.
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competitive outcome if i) the SLC fails, or ii) the SLC holds and the belief is sufficiently

optimistic (Proposition 3).

8 Extensions

In this section we consider two extensions of the model: costly information acquisition and

Poisson information arrival. We view these extensions as serving multiple purposes. First,

to illustrate how our interpretation of the Coasian force (described above) can be used for

constructing equilibrium. Second, to demonstrate robustness of our main results and provide

several additional insights.

8.1 Costly Investigation

In many applications, information is not freely generated. Rather the buyer must “inves-

tigate” by actively engaging in activities to unearth information. For example, during due

diligence, acquiring firms hire auditors, lawyers, and other consultants to investigate the

financial soundness of the target. Such activities require resources, which we now model

explicitly by introducing a flow cost, m > 0, incurred by the buyer while still engaged in the

negotiation with the seller. Costly investigation introduces the possibility that the buyer

may prefer to terminate the negotiation, if she anticipates that it will take too long to reach

an agreement. We therefore endow the buyer with this strategic option, which if exercised,

generates a payoff of zero for both players.24

The Due Diligence Problem with Costly Investigation. To construct the equilib-

rium, we start by using our conjecture that the buyer will be unable to profit from the ability

to negotiate the price. Hence, we first solve for the buyer’s value function in the analog of

the due diligence problem. In the original due diligence problem (Section 4.1), the buyer

chooses a stopping time τ to maximize Ez[e−rτ (V (Ẑτ )−KH)]. With the addition of the flow

cost, the buyer’s problem becomes:

sup
τ

Ez
[
−
∫ τ

0

e−rtmdt+ e−rτ max
{
V (Ẑτ )−KH , 0

}]
. (25)

The integral term captures the cumulative investigation costs incurred, and the max operator

incorporates the idea that when the buyer “stops” she may be exercising the option to trade

24Notice that the buyer would never exercise the option to terminate the bargaining in the model of Section
2 (i.e., with m = 0) as she can always guarantee herself a positive payoff by playing the optimal strategy
from the due diligence problem (Section 4.1).
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at price KH or terminating the negotiation.

Lemma 4. The unique solution to (25) is of the form τ = inf
{
t : Ẑ 6∈ (αm, βm)

}
, with

−∞ < αm < z < βm <∞. For z ∈ (αm, βm) the buyer’s value function satisfies

rFB(z) = −m+
φ2

2

(
(2p(z)− 1)F ′B(z) + F ′′B(z)

)
,

where (αm, βm) and the constants in the buyer’s value function are characterized by the

boundary conditions

FB(αm) = 0 (26)

F ′B(αm) = 0 (27)

FB(βm) = V (βm)−KH (28)

F ′B(βm) = V ′(βm). (29)

As before, the buyer exercises the option to trade when her beliefs are sufficiently opti-

mistic (z ≥ βm), but with the investigation now being costly, the buyer chooses to terminate

the negotiation if her beliefs are sufficiently pessimistic (z ≤ αm).25

Equilibrium with Costly Investigation. Characterizing the equilibrium offers and ac-

ceptance rates that garner the buyer her due diligence payoff for z > αm is analogous to the

construction in the model with m = 0 (Sections 3.1-3.2). For z ≥ βm, trade is immediate

at a price KH . For z ∈ (αm, βm), there is zero net benefit to screening (Γ(z) = 0), implying

the offer and low-type continuation value is as in (22), which is accepted at the smooth rate

characterized by (20). For these beliefs, FB(z) > 0, so the buyer never walks away.

The new piece of the equilibrium construction is determining the behavior and low-type

payoffs for z ≤ αm (i.e., when FB(z) = 0). As before, FL(z) ≥ VL for any z, otherwise

the buyer would seek to speed up trade with the low type, generating a contradiction.

Therefore, set W (z) = VL = FL(z) for all z ≤ αm, where W (z) should be interpreted as

the offer in state z conditional on the buyer not terminating the negotiation. Given that

the seller’s continuation payoff is constant below αm, the belief must exit the region in zero

time conditional on rejection. Hence, for z < αm the low type accepts with probability
p(αm)−p(z)
p(αm)(1−p(z)) , so that z jumps to αm conditional on rejection.

The last part of the construction is to characterize the behavior precisely at z = αm. We

first argue that the buyer must sometimes terminate the negotiation. If not, then (conditional

25Note, as m→ 0, αm → −∞ and βm → βd, in line with Section 4.1.
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on rejection) the belief process would have a reflecting boundary at z = αm, and the implied

boundary condition is F ′L(α+
m) = 0. However, differentiating (22) gives that FL must satisfy

F ′L(α+
m) = (1 + eαm)F ′′B(α+

m) + (eαm − 1)F ′B(α+
m)︸ ︷︷ ︸

=0

. (30)

This implies F ′L(α+
m) > 0 by the convexity of the buyer’s value function in the “continuation”

region (αm, βm), which obviously contradicts the boundary condition implied by reflection.

Hence, the buyer must sometimes terminate the negotiation at z = αm. Let ζ denote the

(random) date of termination and denote the termination rate by κ ≥ 0, which is sometimes

referred to as a “killing rate.”26 Because the buyer earns FB(α) = 0 by continuing the

negotiation, she is indifferent between remaining in the negotiation and exiting, so is willing

to mix. The implied boundary condition for the low type, known as a Robin condition, is

F ′L(α+
m) = κ(FL(αm) − 0) = κVL.27 To satisfy (30), set κ =

(1+eαm )F ′′B(α+
m)

VL
, which completes

the equilibrium construction.

Proposition 7. There exists an equilibrium of the bargaining game with costly investigation

(as characterized above) in which the buyer’s value function is equal to her value function in

the due diligence problem with costly investigation (as characterized in Lemma 4).

One interesting implication of this extension is its effect on seller welfare. The threshold

at which the buyer offers KH is strictly decreasing in m. Hence, there exists a cutoff belief

above which the low-type seller benefits from higher buyer investigation costs. However,

below that cutoff the low type seller is worse off when the buyer must pay more to investigate.

Intuitively, the higher investigation cost prompts the buyer to end the game more quickly—

be it by offering KH (which benefits the seller) or by walking away (which harms the seller).

When the belief is high, the former effect dominates and FL increases with m; when the

belief is low, the latter effect dominates and FL decreases with m.

8.2 Poisson Information Arrivals

We now consider an extension where in addition to learning gradually from the news process

Xt, the buyer may also learn from Poisson information arrivals. Specifically, there is a

Poisson process with intensity λ > 0, and at its first arrival time, ν, the buyer (publicly)

learns θ, at which point trades occurs immediately at price Kθ.
28

26Formally, ζ = inf{t ≥ 0 : κLt = ξ}, where Lt is the local time of Zt at αm and ξ ∼ exponential(1) and
independently distributed. See Harrison (2013, Section 9.3), for details on the construction of this process.

27The buyer’s Robin condition is F ′B(α+
m) = κFB(αm) = 0, which is redundant given (26) and (27).

28The case in which λ = 0 is the model from Section 2. A type-dependent arrival rate would simply add
a drift of (λL − λH) to dẐ prior to an arrival.
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The Due Diligence Problem with Poisson Arrivals. To construct the equilibrium,

we again start with our conjecture that the buyer will receive the same payoff as she would

in the analog of the due diligence problem. With the addition of the perfectly revealing

arrival, the buyer’s due diligence problem becomes:

sup
τ

Ez
[
e−r(τ∧ν)

(
V (Ẑτ∧ν)−

[
KH1{τ<ν} +K(Ẑν)1{ν≤τ}

])]
(31)

where K(z) = Ez[Kθ]. To understand (31), notice that trade occurs at τ ∧ ν regardless of θ.

The only difference is that if τ < ν, then the buyer pays KH for both types whereas if ν ≤ τ

then she pays Kθ (since θ is revealed at ν, p(Ẑν) ∈ {0, 1}).

Lemma 5. The unique solution to (31) is of the form τ = T (βλ) = inf{t : Ẑ ≥ βλ)}, with

z < βλ <∞. For z < βλ the buyer’s value function satisfies

(r + λ)FB(z) = λ(V (z)−K(z)) +
φ2

2

(
(2p(z)− 1)F ′B(z) + F ′′B(z)

)
, (32)

where βλ and the constants in the buyer’s value function are characterized by the boundary

conditions (16)-(18) (with β replaced by βλ).

Not surprisingly, Poisson arrivals benefit the buyer in the due diligence problem and

induce her to wait longer before offering KH . That is, it is straightforward to show that

both βλ and FB are increasing in λ.

Equilibrium with Poisson Arrivals. Characterizing the equilibrium offers and accep-

tance rates that garner the buyer her due diligence payoff is analogous to the construction

in the model with λ = 0 (Sections 3.1-3.2). For z ≥ βλ, trade is immediate at a price KH .

For z < βλ, there is zero net benefit to screening (Γ(z) = 0), implying the offer and low-type

continuation value is as in (22). The low type’s acceptance rate is given by the analog of

(20):

q(z) =
(r + λ)FL(z) + φ2

2
F ′L(z)− φ2

2
F ′′L(z)

F ′L(z)
, (33)

which reflects that, because he earns nothing if his type is revealed, his discount rate effec-

tively increases to r + λ.

Proposition 8. There exists an equilibrium of the bargaining game with Poisson information

arrivals (as characterized above) in which the buyer’s value function is equal to her value

function in the due diligence problem with Poisson information arrivals (as characterized in

Lemma 5).
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Positive profit from acceptance Costly experimentation

(a) Buyer’s Offer (W (z) = FL(z))

Rejection is bad news Rejection is good news

(b) Buyer’s Payoff (FB)

Figure 7: Poisson information arrivals allows the buyer to extract surplus from trading with the
low-type seller for low beliefs (i.e., below pe in panel (a)) and can lead to an equilibrium buyer
value function that is decreasing for low beliefs (i.e., below pg in panel (b)).

Poisson information arrivals alter the price dynamics when the buyer is trading only with

the low type (i.e., for z < βλ) as illustrated in Figure 7. Because the buyer has the option

of waiting for θ to be perfectly revealed, she is able to extract concessions from the low-type

seller in proportion to the value of this option. For example,

lim
z→−∞

FB(z) =
λ

r + λ
VL > 0 and lim

z→−∞
FL(z) =

r

r + λ
VL < VL.

Hence, the buyer earns a positive profit if the low type accepts (i.e., VL − FL(z) > 0) when

the belief is low (below pe in Figure 7(a)), unlike in the λ = 0 case. This finding illustrates a

fundamental difference between the Brownian news and perfectly revealing arrivals. That is,

information that changes the support of the buyer’s beliefs allows her to extract concessions

from the low type whereas the Coasian force overwhelms her ability to do so with Brownian

news. Nevertheless, even with Poisson arrivals, a region of costly experimentation always

persists (above pe in Figure 7(a)). Brownian news is essential for this result; as φ → 0, the

region of costly experimentation disappears (i.e., pe → βλ).
29

One manifestation of the buyer’s ability to extract concessions from the low type is that

her value function FB may be non-monotone in z (first decreasing then increasing). This

occurs when the gains from trade with the low type are larger than the gains from trade with

29Analogous to FS10, as φ→ 0, the buyer’s payoff converges to the maximum of the payoff from waiting
for an arrival and the expected payoff from trading immediately with all seller types (the latter of which is
zero in FS10).
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the high type (i.e., VL −KL > VH −KH) and λ is sufficiently large. When FB is decreasing

(below pg in Figure 7(b)), a rejection, which moves her belief upward, is “bad news” from

the buyer’s perspective. To see this, recall that in equilibrium, the net benefit of screening

must be zero, which implies that

FB(z) < VL −W (z) ⇐⇒ F ′B(z) < 0.

Hence, the buyer’s value function is decreasing at z if and only if the buyer’s payoff from an

acceptance (i.e., VL −W (z)) is strictly higher than her expected payoff prior to making the

offer (i.e., FB(z)). Because FB is always positive, the region over which it is decreasing is a

subset of the region over which VL −W (z) > 0. That is, pg < pe.

Notice the contrast to the model with λ = 0 in which FB is independent of VL−KL and

is everywhere increasing. Intuitively, without Poisson arrivals, the surplus generated from

trades with the low type is irrelevant for the buyer’s payoff because she is not able to extract

any of it, and because the buyer only profits on trades with the high type, a rejection is

always good news (i.e., F ′B > 0).

9 Concluding Remarks

We have investigated a bilateral-bargaining model in which the seller’s private information

is gradually revealed to the buyer until an agreement is reached. In equilibrium, the buyer’s

ability to leverage her access to information in order to extract more surplus from the seller is

remarkably limited. In particular, the buyer’s payoff is identical to what she would achieve

if she were unable to renegotiate the price based on new information. Both the trading

dynamics and efficiency differ from the competitive-buyer analog. Hence, insofar as the buyer

“competes with her future self,” this inter-temporal competition is not a perfect proxy for

intra-temporal competition.

Rather, the robust implication of the Coasian force is that competition with future self

renders the ability to screen through prices useless. We adopt this heuristic to solve several

extensions of the model including costly investigation and Poisson information. In both

cases, the equilibrium can be constructed in a straightforward and “stepwise” fashion by

first solving a simple stopping problem for the uninformed player, which is independent of

the informed player’s value function. Our methodology appears to be useful for constructing

equilibria in bargaining models with frequent offers.
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DeMarzo, P. M. and B. Urošević (2006). Ownership Dynamics and Asset Pricing with a
Large Shareholder. Journal of Political Economy 114 (4), 774–815.

Deneckere, R. and M.-Y. Liang (2006). Bargaining with Interdependent Values. Economet-
rica 74, 1309–1364.

Evans, R. (1989). Sequential bargaining with correlated values. The Review of Economic
Studies .

Fuchs, W. and A. Skrzypacz (2010). Bargaining with arrival of new traders. American
Economic Review 100 (3), 802–836.

Fuchs, W. and A. Skrzypacz (2013). Bridging the gap: Bargaining with interdependent
values. Journal of Economic Theory 148 (3), 1226–1236.

Fudenberg, D., D. K. Levine, and J. Tirole (1985). Infinite-Horizon Models of Bargaining
with One-Sided Incomplete Information. Game-Theoretic Models of Bargaining , 73–98.

Fudenberg, D. and J. Tirole (1991). Game Theory. MIT Press.

Gul, F., H. Sonnenschein, and R. Wilson (1986). Foundations of Dynamic Monopoly and
the Coase Conjecture. Journal of Economic Theory 39, 155–190.

Harrison, J. M. and L. a. Shepp (1981). On Skew Brownian Motion. The Annals of Proba-
bility 9 (2), 309–313.

Harrison, M. J. (2013). Brownian Models of Performance and Control. Cambridge University
Press.

Higgins, M. J. and D. Rodriguez (2006). The outsourcing of R&D through acquisitions in
the pharmaceutical industry. Journal of Financial Economics .
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A Appendix

A.1 Proofs for Theorem 1

Proof of Lemma 1. From Section 3.1, if β ∈ R, then FB, β, C1, C2 must satisfy (15)-(18).
First, from (15),

lim
z→−∞

FB(z) = lim
z→−∞

1

1 + ez
C1e

u1z +
1

1 + ez
C2e

u2z =


−∞ if C2 < 0
0 if C2 = 0
∞ if C2 > 0.

To satisfy (16), therefore, in any solution C2 = 0. This simplifies the remaining two equa-
tions, (17) and (18):

FB(β) =
C1e

u1β

1 + eβ
= V (β)−KH =

eβ

1 + eβ
(VH − VL) + VL −KH

F ′B(β) =
C1e

u1β
(
(u1 − 1)eβ + u1

)
(1 + eβ)2 = V ′(β) =

eβ

(1 + eβ)2 (VH − VL).

The unique solution to the two equations above is

β = β∗ ≡ z + ln

(
u1

u1 − 1

)
C1 = C∗1 ≡

KH − VL
u1 − 1

(
u1

u1 − 1

KH − VL
VH −KH

)−u1

.

If β =∞, then FB(z) = 0 for all z ∈ R, which then violates (B.1), since the buyer could
improve his payoff by offering KH for z > z leading to payoff V (z)−KH . Finally, if β = −∞,
then FB(z) = V (z) − KH for all z ∈ R, which violates (B.3), since she could improve her
payoff by making a non-serious offers in these states.

Proof of Lemma 2. Fix β = β∗ and FB as given by Lemma 1. Using (17), (18), and that
FL(β) = KH , we have that Γ(β) = 0. For an arbitrary q on z < β, let Gq

L(z) be the expected
payoff of a low type who rejects all offers until Zt ≥ β (i.e., ELz [e−rT (β)KH ]). Let q∗ denote
the expression for q given in (24), and Z∗ be the belief process that is consistent with q∗.
By construction, for all z < β,

1

1 + ez

(
VL −Gq∗

L (z)− FB(z)
)

+ F ′B(z) = 0.

From (12), Γ(z) ≤ 0 for all z < β. For the purpose of contradiction, suppose there exists
a Σ(β, q)-equilibrium, with z0 < β with Γ(z0) < 0. By continuity of Gq

L(= FL), FB and
F ′B, there exists an open interval around z0 on which Γ < 0. Let I be the union of all such
intervals and ¬I ≡ (−∞, β]\I. To satisfy (13), then q = 0 on I. Given FB from Lemma 1,
Γ = 0 on ¬I implies FL on ¬I must be as given by (23), and further, using (19) and (20),
that q = q∗ on the interior of ¬I. Hence, q(z) ≤ q∗(z) for almost all z < β. Therefore,
starting from any Z0 = Z∗0 = z ≤ β, Zt ≤ Z∗t for all t ≤ inf{s : Z∗s ≥ β}. It follows that
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FL(z) = Gq
L(z) ≤ Gq∗

L (z), which then implies

Γ(z) =
1

1 + ez
(VL − FL(z)− FB(z)) + F ′B(z) ≥ 0,

producing a contradiction. Hence, if Σ(β, q) is an equilibrium, Γ(z) = 0 for all z < β.

Proof of Lemma 3. Immediate from Lemmas 1 and 2, and analysis in Section 3.2.

Proof of Theorem 1. Lemmas 1 and 3 show that there exists a unique candidate Σ(β, q).
Thus, to prove the theorem, we need to verify that the candidate is well-defined and that it
satisfies the equilibrium conditions.

For the former, we first argue the candidate admits a unique (strong) solution to (6)
for any t ≤ T (β). To do so, first observe that Ẑt is linear in Xt and (uniquely) given by
Ẑt = Ẑ0 + φ

σ

(
Xt −

(
µH+µL

2

)
t
)
. Since we are looking for a solution to Zt = Ẑt + Qt and

Qt =
∫ t

0
q(Zs)ds, it is then sufficient to show that there exists a unique solution to

Qt =

∫ t

0

q(Ẑs +Qs)ds (A.1)

Using the functional form of the candidate in (24), we can write (A.1) in its differential form
as

dQt = κe−u1(Ẑt+Qt)dt, Q0 = 0. (A.2)

where κ = φ2VL
2C∗1

. For each (t, ω), (A.2) is a separable ordinary differential equation, which has

a unique solution Qt = ln
(

1 + u1κ
∫ t

0
e−u1Ẑsds

)
/u1. We have shown that for any t ≤ T (β),

there exists unique solutions for Qt and Ẑt, and thus there exists a unique solution to (6).
Given Z, that the remaining objects, (SH , SL,W ), are well defined is immediate.

We next verify that the equilibrium conditions are satisfied. Conditions 3 and 2 are
satisfied by construction for any (β, q): 3 follows immediately from (6), 2 can be verified by
inserting (7) and (8) into (3) to obtain (6).

Next we verify Seller Optimality (Condition 1). Consider first the high type and note
from (7) that SH = {T (β)} and from (9) that W (z) ≤ KH . Therefore,

sup
τ∈T

EHz
[
e−rτ (W (Zτ )−KH)

]
≤ 0 = FH(z),

where FH(z) is equal to the high-type’s payoff under the candidate equilibrium strategy,
T (β), which verifies that SH solves (SPH).

For the low type, recall that, by construction, FL(z) = ELz [e−rT (β)]KH . Let T (β) ≡
T ∩ {τ : τ ≤ T (β), ∀ω}, i.e., the set of all stopping times such that τ ≤ T (β) for all ω.
Observe that ELz [e−rτW (Zτ )] ≤ FL(z) for any τ ∈ T \T (β) since W is bounded above by KH

and delay is costly. That is, since KH is the largest possible offer, it is optimal for the low
type to accept it as soon as it is offered. Note further that SL ⊆ T (β). To prove SL solves
(SPL), we show that, in fact, for any τ ∈ T (β), ELz [e−rτW (Zτ )] = FL(z), which verifies that
SL solves (SPL).
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Let fL(t, z) ≡ e−rtW (z) and note that fL is C2 for all z 6= β. Conditional on θ = L and
t < T (β), Z evolves according to

dZt =

(
q(Zt)−

φ2

2

)
dt+ φdBt.

By Dynkin’s formula, for any τ ∈ T (β),

ELz [fL(τ, Zτ )] = fL(0, z) + ELz
[∫ τ

0

ALfL(s, Zs)ds

]
,

where AL is the characteristic operator for the process Yt = (t, Zt) under QL, i.e.,

ALf(t, z) =
∂f

∂t
+

(
q(z)− φ2

2

)
∂f

∂z
+

1

2
φ2∂

2f

∂z2
. (A.3)

Applying AL to fL, we get that

ALfL(t, z) = e−rt
[
−rW (z) +

(
q(z)− φ2

2

)
W ′(z) +

φ2

2
W ′′(z)

]
= e−rt

[
−rFL(z) +

(
q(z)− φ2

2

)
F ′L(z) +

φ2

2
F ′′L(z)

]
= 0,

where the first equality follows from the fact the W (z) = FL(z) (by construction, see (9))
and the second equality from the fact that q satisfies (20). Hence, for any τ ∈ T (β),
ELz [fL(τ, Zτ )] = FL(z), as desired.

The last step in the proof is to verify Buyer Optimality, i.e., that FB satisfies (B.1)-(B.3).

• For (B.1), when z ≤ β, note that

FB(β−x)−(V (β−x)−KH) =
e−u1x

(
ex + ex(1+u1)(u1 − 1)− u1e

u1x
)

(VH −KH)(KH − VL)

ex(u1 − 1)(VH −KH) + u1(KH − VL)

The denominator on the RHS is positive since VH > KH > VL. The numerator is
positive provided that for all x > 0, ex + ex(1+u1)(u1 − 1) − u1e

u1x ≥ 0, which can be
shown to hold for all u1 ≥ 1 (i.e., over the entire relevant parameter space). When
z > β, FB = V −KH by construction so (B.1) holds with equality.

• For (B.2), when z ≤ β, note that

d

dz′
J(z, z′) =

C1e
(u1−1)z′

(
ez − ez′

)
(−1 + u1)u1

1 + ez
< 0, ∀z′ ∈ (z, β). (A.4)

Since J(z, z′) is decreasing in z′ and FB(z) = J(z, z), we have that FB(z) = J(z, z) =
supz′∈(z,β) J(z, z′). Furthermore, J(z, z′) = V (z) −KH for all z′ ≥ β and therefore by
continuity of J , FB(z) ≥ J(z, z′) for all z′ ≥ z as required. For z > β, FL(z) = KH
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and so J(z, z′) = V (z)−KH = FH(z) for all z′ ≥ z > β. Therefore (B.2) with equality
for z > β.

• For(B.3), let fB(t, z) = e−rtFB(z) and note that fB is C1 and C2 for all z 6= β. For
any stopping time τ such that Ez[τ ] <∞, using Dynkin’s formula we get:

Ez

[
fB(τ, Ẑτ )

]
= fB(0, z) + Ez

[∫ τ

0

AfB(t, Ẑt)dt

]
(A.5)

where Â is the characteristic operator of the process (t, Ẑt) under QB starting from

Ẑ0 = z i.e., Âf(t, z) = ∂f
∂t

+ φ2

2
(2p(z) − 1)∂f

∂z
+ φ2

2
∂2f
∂z2 . From (14), ÂfB = 0 for z < β.

For z > β, FB = V −KH and noting that φ2

2
(2p(z) − 1)V ′(z) + φ2

2
V ′′(z) = 0, implies

ÂfB = e−rt(−r(V (z)−KH)) < 0. We have thus demonstrated that ÂfB ≤ 0. There-
fore, for any such stopping time τ , from (A.5) fB(0, z) = FB(z) ≥ Ez [fB(τ, Zτ )] =

Ez

[
e−rτFB(Ẑτ )

]
, as desired.

A.2 Proofs for Theorem 2

Proof of Theorem 2. In Lemma A.2, we show that in any equilibrium there exists a β such
that the buyer offers KH (and the seller accepts w.p.1.) if and only if z ≥ β. Consider
equilibrium play for t < T (β), by Lesbesgue’s decomposition for monotonic functions (cf.
Proposition 5.4.5, Bogachev, 2013), we can decompose Q into two processes

Q = Qabs +Qsing

where Qabs is an absolutely continuous process and Qsing is non-decreasing process with
dQsing

t = 0 almost everywhere. We have already demonstrated that the equilibrium is
unique among those in which Q is absolutely continuous, therefore it is sufficient to rule out
equilibria with a singular trading intensity.

To do so, first note that Qsing can further be decomposed into a continuous nondecreasing
process and a nondecreasing jump process. Thus, a singularity can take one of two possible
forms. Either, (i) a jump from some z0 to some z1 > z0 or (ii) trading intensity of greater
than dt at some isolated z0. In Lemma A.7, we show that (i) cannot be part of an equilibrium.
Lemma A.8 eliminates the possibility of (ii).

In order to prove Lemmas A.2, A.7, and A.8, (and thus Theorem 2), we will use the
following preliminary lemmas.

Lemma A.1. In any equilibrium, if FB is C2 on any interval (z1, z2), then for all z ∈ (z1, z2)

(A− r)FB(z) ≤ 0. (A.6)

where A is the characteristic operator of Ẑ under Q.

Proof. If (A.6) is violated at such a z ∈ (z1, z2), then since FB is C2 on the interval, there
exits ε > 0 such that (A.6) is violated over the interval (z − ε, z + ε). Let τε = inf{t : Ẑt /∈

40



(z − ε, z + ε)}, then by Dynkin’s formula:

Ez

[
e−rτεFB(Ẑτε)

]
= FB(z) + Ez

[∫ τε

0

e−rs(A− r)FB(Ẑs)ds

]
(A.7)

> FB(z), (A.8)

which violates (B.3).

Lemma A.2. In any equilibrium, there exists β <∞ such that FL(z) = W (z) = KH if and
only if z ≥ β.

Proof. First, note that for any z, there must exist some z′ > z such that FL(z′) = W (z′) =
KH and FB(z′) = V (z′)−KH . If not, then the high type never trades in states above z, the
probability of trade goes to zero as z →∞, and thus FB(z)→ 0 < VH −KH , which violates
(B.1).

Hence, there exists z1 <∞ such that FL(z1) = KH and FB(z1) = V (z1)−KH . To prove
the lemma (by contradiction), suppose that there is some z2 > z1 such that FL(z2) < KH .
Starting from z1, consider the buyer’s payoff from the consistent offer/post-rejection belief
pair (w, z′) = (FL(z2), z2):

J(z1, z2) ≡ p(z2)− p(z1)

p(z2)
(VL − FL(z2)) +

p(z1)

p(z2)
FB(z2)

≥ p(z2)− p(z1)

p(z2)
(VL − FL(z2)) +

p(z1)

p(z2)
(V (z2)−KH)

= V (z1)−
(
p(z2)− p(z1)

p(z2)
FL(z2) +

p(z1)

p(z2)
KH

)
> V (z1)−KH = FB(z1),

where the first inequality follows from (B.1) and the second by our hypothesis that FL(z2) <
KH . Notice that J(z1, z2) > FB(z1) violates (B.2), which yields the desired contradiction.

Four additional lemmas will be used in the proofs of Lemmas A.7 and A.8.

Lemma A.3. In any equilibrium, if FB is differentiable at z, then Γ(z) ≤ 0.

Proof. Fix z, and assume that F ′B(z) exists. First, suppose z ≥ β. Then, by Lemma A.2,
FL(z′) = KH and FB(z′) = V (z′)−KH for all z′ ≥ z. Substituting in these expressions, one
finds that J(z, z′) = V (z)−KH for all z′ ≥ z, and Γ(z) = 0.

Now suppose that z < β. If Z does not jump (following a rejection) at z, then the
argument provided in Section 3.1 for the necessity of (12) applies. Finally, if Z does jump
from z to z′ > z, then

FB(z) = J(z, z′) =
p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′). (A.9)

From the envelope theorem,

F ′B(z) = J1(z, z′) =
p′(z)

p(z′)
(FB(z′) + FL(z′)− VL). (A.10)
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Solving (A.9) for FB(z′) yields

FB(z′) =
p(z′)

p(z)
(FL(z′) + FB(z)− VL)− FL(z′) + VL. (A.11)

Plugging (A.11) into (A.10) and using that FL(z) = FL(z′), since the low type must be
indifferent, gives

F ′B(z) =
p′(z)

p(z)
(FB(z) + FL(z)− VL),

which is equivalent to Γ(z) = 0.

Lemma A.4. In any equilibrium, β > z and FB(z) ≥ Ez
[
e−rT̂ (β)(V (β)−KH)

]
> 0, where

T̂ (β) = inf{t ≥ 0 : Ẑt ≥ β} and Ẑ0 = z.

Proof. For any z1 > z, the policy of waiting for news for all z < z1 and immediately trading
at price KH for all z ≥ z1 is feasible for the buyer and, starting from any z, generates a

payoff of Ez
[
e−rT̂ (z1)(V (z1)−KH)

]
> 0. Hence, the buyer’s equilibrium payoff must be at

least as large. Finally, if β < z, then FB(β) = V (β)−KH < 0 by definition of z, which we
just established cannot be true.

Lemma A.5. In any equilibrium, FL(z) = ELz
[
e−rT (β)KH

]
.

Proof. From Lemma A.2, we know that any equilibrium must feature a threshold β < ∞,
above which trade takes place immediately at a price of KH and below which trade only
occurs with the low type. For all z ≥ β, the lemma is immediate. Hence, if the lemma
is false, then there exists a state z < β in which the low type trades w.p.1, but at a price
W (z) < KH . But then rejection at Zt = z leads to a belief of Zt+ =∞ and an offer of KH .
Hence, the low type would do better to reject at z, generating a contradiction.

Lemma A.6. In any equilibrium: (i) FL is non-decreasing, (ii) FL is continuous, and (iii)
FB is continuous.

Proof. For (i), first suppose that Q (and therefore Z) has continuous sample paths. By
Lemma A.5 then, for any z1 < z2 < β,

FL(z1) = ELz1
[
e−rT (β)KH

]
= ELz1

[
e−rT (z2)

(
ELz2
[
e−rT (β)KH

])]
= ELz1

[
e−rT (z2)FL(z2)

]
≤ FL(z2).

Thus, if FL(z2) < FL(z1), there must exist a z0 < z2 such that Zt jumps from z0 to some
z3 > z2, with FL(z0) = FL(z3) > FL(z2). Hence, FB(z0) = J(z0, z3). But then (B.2) must be
violated (either at z0 or z2). For instance, if (B.2) holds at z2 then FB(z2) ≥ J(z2, z3) and
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therefore

J(z0, z2) =
p(z2)− p(z0)

p(z2)
(VL − FL(z2)) +

p(z0)

p(z2)
FB(z2)

≥ p(z2)− p(z0)

p(z2)
(VL − FL(z2)) +

p(z0)

p(z2)
J(z2, z3)

> J(z0, z3) = FB(z0),

which violates (B.2) at z0.
For (ii), suppose that FL is discontinuous at z1 ≤ β. Then by Lemma A.5, Z must also

be discontinuous at z1. The monotonicity of Q implies that Z can only have upward jumps,
so FL(z−1 ) = FL(z2) for some “jump-to” point z2 > z1. By (i), FL is non-decreasing, so

FL(z2) ≥ FL(z+
1 ) ≥ FL(z−1 ) = FL(z2),

contradicting a discontinuity of FL at z1.
For (iii), FB(z−0 ) < FB(z+

0 ) violates (B.2): starting from z0 − ε, the buyer can offer
w = FL(z0 + ε) and trade with arbitrarily small probability at price which is bounded above
by KH , and therefore achieve a payoff arbitrarily close to FB(z+

0 ). Since FL is continuous,
if FB(z−0 ) > FB(z+

0 ), then FB(z−0 ) = J(z0, z1) for some z1 > z0 (i.e., Z must jump upward
as it approaches z0 from the left). But J is continuous in its first argument and therefore
FB(z+

0 ) < J(z0, z1) violating (B.2).

Lemma A.7. In any equilibrium, Q has continuous sample paths (i.e., there cannot exist
an atom of trade with only the low type).

Proof. Suppose that starting from Zt = z0, the equilibrium belief process jumps to Zt+ =
α > z0. By Lemma A.5, it must be that FL(z0) = FL(α) and FL non-decreasing (Lemma A.6)
then implies that FL(z) = FL(z0) for all z ∈ (z0, α). Moreover, there must exist a z1 > α
such that Z evolves continuously in the interval (α, z1) (otherwise Zt+ 6= α). Stationarity
then requires that α be a reflecting barrier for the belief process conditional on rejection
starting from any Zt ≥ α. We claim that these equilibrium dynamics require the following
properties.

(i) (A− r)FB(z) = 0 and Γ(z) ≤ 0 for all z ∈ (α, z1)

(ii) Γ(z) = 0 for all z ∈ (z0, α)

(iii) F ′L(α) = 0

(iv) FB is C2 at α.

The properties in (i) follow from the arguments in Section 3.1. For (ii), note that the buyer’s
payoff starting from any z ∈ (z0, α) is given by

FB(z) = J(z, α) =
p(α)− p(z)

p(α)
(VL − FL(α)) +

p(z)

p(α)
FB(α). (A.12)
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Since, α ∈ supz′≥z J(z, α), the envelope theorem yields

F ′B(z) = J1(z, α). (A.13)

Solving (A.12) for FB(α) and plugging into (A.13) gives

F ′B(z) =
p′(z)

p(z)
(FB(z)− (VL − FL(α)) =

p′(z)

p(z)
(FB(z)− (VL − FL(z)),

which implies (ii). For (iii), note that F ′L(α−) = 0 is implied by FL(z) = FL(α) for all
z ∈ (z0, α) and F ′L(α+) = 0 is implied by the reflecting barrier. For (iv), note that C1 at α
follows from physical conditions. Namely, the Robin condition

F ′B(α+) =
p′(α)

p(α)

(
FB(α)− (VL − FL(α))

)
, (A.14)

where p′(α)
p(α)

is the (unconditional) intensity at which the seller accepts at α and the second
term on the right hand side is the difference between the buyer’s payoff following rejection
versus acceptance. Differentiating (A.12) and taking the limit as z ↑ α yields that F ′B(α−)
is equal to F ′B(α+) in (A.14). For C2, if F ′′B(α+) < F ′′B(α−) then (A − r)FB(z) > 0 in a
neighborhood just below α, which violates (A.6). On the other hand, if F ′′B(α+) > F ′′B(α−)
then

Γ′(α+) =
p′′(α)

p(α)

(
FB(α)− (VL − FL(α))

)
− p′(α)

p(α)

(
F ′L(α+) + F ′B(α+)

)
+ F ′′B(α+)

=
p′′(α)

p(α)

(
FB(α)− (VL − FL(α)

)
− p′(α)

p(α)

(
F ′L(α−) + F ′B(α−)

)
+ F ′′B(α+)

= Γ′(α−) + F ′′B(α+)− F ′′B(α−)

> 0,

where the second equality uses (iii) and the final inequality contradicts that Γ(z) ≤ 0 estab-
lished in (i). Thus, we have established (i)-(iv).

We now claim that (i)-(iv) requires FB(α) ≤ 0, which contradicts Lemma A.4. First, (ii)-
(iv) imply Γ(α) = 0. Therefore to satisfy Γ(z) ≤ 0 for the neighborhood above α requires
Γ′(α) ≤ 0. But,

Γ′(α) ≤ 0 ⇐⇒ −eα

(1 + eα)2
(VL − FL(α)− FB(α))− 1

1 + eα
F ′B(α) + F ′′B(α) ≤ 0

⇐⇒ (2p(α)− 1)F ′B(α) + F ′′B(α) ≤ eα

1 + eα
Γ(α)

⇐⇒ AFB(α) ≤ 0

⇐⇒ FB(α) ≤ 0,

where the first ⇐⇒ follows by differentiating Γ, the second is simple algebra, the third
follows from multiplying both sides of the second by φ2/2 and using Γ(α) = 0, and the fourth
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from the fact that (A.6) holds at α.

Lemma A.8. There cannot exist an isolated point of singular trading intensity.

Proof. We first prove the FB must be C2 at any such α. Since there are no jumps and α is
an isolated point, Q is absolutely continuous in a neighborhood of α. Hence, there exists a
ε > 0 such that

(A− r)FB(z) = 0, ∀z ∈ Nε(α) \ α. (A.15)

By Lemma A.6, FL and FB are continuous. Therefore, if dQt > 0 at Zt = α, it must be that

1

1 + eα
(VL − FL(α)− FB(α)) + F ′B(α+) = 0. (A.16)

To prove that FB must be C1 at α, suppose that F ′B(α−) < F ′B(α+). Starting from Zt = α,
let τε = inf{s ≥ t : |Ẑs − Ẑt| ≥ ε}. Let ∆ ≡ F ′B(α+) − F ′B(α−) > 0. An extension of Ito’s
formula (see Harrison, 2013, Proposition 4.12) gives

e−rτεFB(Zτε) = FB(α) +

∫ τε

0

e−rs(A− r)FB(Zs)I(Zs ∈ U)ds

+

∫ τε

0

e−rsφF ′B(Zs)dBs +
1

2
φ2∆l(τε, α).

Taking the expectation over sample paths, we obtain a violation of (B.3):

Ez[e
−rτεFB(Zτε)] = FB(α) +

1

2
σ2∆Eα [l(τε, α)] = FB(α) +

1

2
σ2∆

∫ τε

0

p0(s, α)ds > FB(α),

where p0(s, ·) is the density of Zs starting from Z0 = α. Next, suppose that F ′B(α−) > F ′B(α+)
Then,

Γ(α−) =
1

1 + eα
(VL − FL(α)− FB(α)) + F ′B(α−)

>
1

1 + eα
(VL − FL(α)− FB(α)) + F ′B(α+)

= Γ(α+) = 0,

which violates Lemma A.3 in a neighborhood below α. Thus, we have established that FB
must be C1 at α.

For C2, since (A.6) holds with equality at α+ and FB is C1 at α, if F ′′B(α−) > F ′′B(α+)
then (A.6) is violated in a neighborhood below z0. Next suppose that F ′′B(α+) > F ′′B(α−).
Then it must be that (A.6) holds strictly in a neighborhood below α, which violates (A.15).
We have thus established the smoothness of FB at α.

Now, recall that an isolated singularity at α means that for t ≤ τε, Q
sing
t increases only

at times t such that Zt = α. Thus, Qsing
t is proportional to the local time of Zt at α (see

Harrison, 2013, Section 1.2), which we denote by lZα (t). And, for t ≤ τε, Z evolves according
to

Zt = Ẑt +Qabs
t + δlZα (t). (A.17)
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Harrison and Shepp (1981) show that (A.17) has a (unique) solution if and only if |δ| ≤ 1,
in which case Z is distributed as skew brownian motion (SBM) with δ capturing the degree
of skewness. If δ = 1, then Z has a reflecting boundary at α, whereas for δ = 0 there is no
singularity at α and Z is a standard Ito diffusion. By Lemma A.5, SBM involves a kink in
the low type’s value function at α, namely

γF ′L(α+) = (1− γ)F ′L(α−), (A.18)

where γ = 1+δ
2

(see Kolb, 2016). There are three (exhaustive) cases to rule out.
First, suppose F ′L(α+) = F ′L(α−) = 0. Then we have Γ(α) = 0, F ′L(α) = 0, and (A.6)

holds in a neighborhood around α. Using an argument virtually identical to the one used
in the Proof of Lemma A.7 leads to the conclusion that FB(α) ≤ 0, which yields a contra-
diction. Second, suppose F ′L(α+) = F ′L(α−) 6= 0. Then (A.18) requires γ = 1

2
. But then

δ = 0, contradicting the hypothesis of an isolated singular component at α. Third, and fi-
nally, suppose F ′L(α+) 6= F ′L(α−). By FL nondecreasing (Lemma A.6), F ′L(α+), F ′L(α−) ≥ 0.
Further, (A.18) and γ ≥ 1

2
then imply that F ′L(α−) > F ′L(α+) > 0. In addition, we know

that Γ(α) = 0, and therefore Γ′(α−) ≥ 0 in order to maintain Γ(z) ≤ 0 in the neighborhood
just below α (as required by Lemma A.3). Next, observe that Γ′ is strictly decreasing in
F ′L. Therefore, F ′L(α+) < F ′L(α−) implies that Γ′(α+) > Γ′(α−) ≥ 0. Since Γ(α) = 0, this
implies Γ(z) > 0 for z in the neighborhood just above α, in violation of Lemma A.3. Hence a
contradiction arises in all cases, and there cannot exist an isolated point of singular trading
intensity.

B Remaining Proofs (For Online Publication)

Proof of Proposition 1. The first statement is immediate from the analysis in Sections 3.1
and 4.1; the buyer’s value function in both cases satisfy the same ODE and boundary
conditions. For the second statement, notice that the low types’ payoff in the due diligence
problem is ELz [e−rT̂ (β)KH ], where T̂ (β) = inf{t ≥ 0 : Ẑt ≥ β} ≥ T (β) = inf{t ≥ 0 : Zt ≥ β}
and hence ELz [e−rT̂ (β)KH ] ≤ ELz [e−rT (β)KH ] = FL(z).

Proof of Proposition 2. As shown in DG12 (see the proof of Lemma B.3 therein), βc > z∗H ,
where z∗H is the threshold belief at which a high-type seller would stop in a game where V (z)
is always offered and beliefs evolve only according to news. Using the closed form expressions
for z∗H (see (41) in DG12) and βb (see Lemma 1), it is straightforward to check that z∗H > βb,
which proves the lemma.

Proof of Proposition 3. First, Lb,Lc ≥ 0, Lb(z) > 0 if and only z < βb, and Lc(z) > 0 if and
only z < βc. By Proposition 2, βb < βc. Hence, by continuity of Lc and Lb, there exists
z2 < βb such that Lb(z) < Lc(z) for all z ∈ (z2, βc).

In the bilateral outcome, F b
H = 0, so Πb(z) = F b

B(z)+(1− p(z))F b
L(z). In the competitive

outcome, F c
B = 0, so Πc(z) = p(z)F c

H(z) + (1 − p(z))F c
L(z). Further, in the competitive

outcome, for all z < αc, both seller payoffs are constant: F c
L(z) = VL and F c

H(z) = A ∈
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(0, VH −KH). Direct calculations then show:

lim
z→−∞

Lb(z) = lim
z→−∞

Lc(z) = 0.

Therefore, by L’Hospital’s rule:

lim
z→−∞

(
Lb(z)

Lc(z)

)
= lim

z→−∞

(
L′b(z)

L′c(z)

)
=

VH −KH

VH −KH − A
> 1.

Hence, there exists z1 > −∞ such that Lb(z) > Lc(z) for all z < z1.

Proof of Proposition 4. From the expression in Lemma 1, β is decreasing in u1. Clearly u1

decreases with φ, which implies (i). The remaining comparative static results will be shown
with respect to u1. For (ii), using the expression in (24) we have that

d

du1

q(z) =
rVL

eu1z(u1 − 1)2u2
1(KH − VL)

ζu1
(
1 + u1(z − 2)− u2

1z + (u1 − 1)u1 ln(ζ)
)

where ζ ≡ u1(KH−VL)
(u1−1)(VH−KH)

= eβ > 0. The expression above is strictly positive (negative) for

z > (<)β− 2u1−1
u1(u1−1)

, which implies (ii). For (iii), it is sufficient to show that FB is decreasing
in u1 below β. To do so, plug in the expression for C1 = C∗1 into FB and differentiate with
respect to u1 to get that

d

du1

FB(z) =
1

1 + ez
eu1z

(
∂C∗1
∂u1

+ zC∗1

)
=

1

1 + ez
eu1z

(
KH − VL
u1 − 1

)
ζ−u1(z − ln(ζ))

< 0,

where the inequality follows from noting that ln(ζ) = β. For (iv), note that for z < β,

d

du1

FL(z) = eu1z

(
(1 + (u1 − 1)z)C∗1 + (u1 − 1)

∂C∗1
∂u1

)
= eu1z

(
KH − VL
u1 − 1

)
ζ−u1 (1 + (u1 − 1)(z − ln(ζ)) .

Noting that eu1z
(
KH−VL
u1−1

)
ζ−u1 > 0, we have that FL(z) increases with u1 for z ∈ (β− 1

u1−1
, β)

and decreases in u1 for z < β − 1
u1−1

, which proves (iv). For (v), note that Π(z) = FB(z) +
(1− p(z))FL(z) and therefore

d

du1

Π(z) =
d

du1

FB(z) + (1− p(z))
d

du1

FL(z)

=
1

1 + ez
eu1z

(
KH − VL
u1 − 1

)
ζ−u1 (1 + u1(z − ln(ζ))) ,
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which is positive for z ∈ (β − 1
u1
, β) and negative for z < β − 1

u1
, implying (v).

Proof of Proposition 5. First, note that taking the limit as φ → ∞ is equivalent to taking
the limit as u1 → 1 from above (denoted u1 → 1+). For (i), using the expression for β in
Lemma 1, we have that

lim
u1→1+

β = z + lim
u1→1+

ln

(
u1

u1 − 1

)
=∞.

For (ii), using the expressions for C∗1 and q from Lemmas 1 and 3,

q(z) =
rVLe

−u1z

C∗1u1(u1 − 1)
=
rVLe

−u1z
(

u1(KH−VL)
(u1−1)(VH−KH)

)u1

u1(KH − VL)
,

which, for all z < β, tends to ∞ as u1 → 1+. Incorporating the expression for β yields:

lim
u1→1+

q(β − x) = lim
u1→1+

rVLe
u1x

u1(KH − VL)
=

rVLe
x

KH − VL
.

For (iii), from Lemma 1,

FB(z) =

 V (z)−KH if z ≥ β
eu1z(VH−KH)

(
u1(KH−VL)

(u1−1)(VH−KH )

)1−u1

(1+ez)u1
if z < β

As u1 → 1+, β →∞, meaning for any z ∈ R,

lim
u1→1+

FB(z) = lim
u1→1+

eu1z(VH −KH)
(

u1(KH−VL)
(u1−1)(VH−KH)

)1−u1

(1 + ez)u1

=
ez

1 + ez
(VH −KH) = p(z)(VH −KH).

Further, since FB(z) is continuous in z and non-decreasing in φ (Proposition 4), the conver-
gence is uniform by Dini’s Theorem.30 For (iv), from Lemma 3,

FL(z) =

{
KH if z ≥ β

VL + eu1z(VH −KH)u1(KH − VL)
(
u1(KH−VL)

u1−1

)−u1

if z < β

As u1 → 1+, β →∞, meaning for any z ∈ R,

lim
u1→1+

FL(z) = VL + lim
u1→1+

eu1z(VH −KH)u1(KH − VL)

(
u1(KH − VL)

u1 − 1

)−u1

= VL.

30To apply Dini’s Theorem, the function’s domain must be compact. However, simply transform log-
likelihood states, z, back into probability states, p ∈ [0, 1], and, for all φ-values, extend the function to
p = 0, 1 to preserve continuity.

48



Finally, for (v),

0 ≤ L(z) =
ΠFB(z)− Π(z)

ΠFB(z)
=
p(z)(VH −KH)− FB(z) + (1− p(z))(VL − FL(z))

ΠFB(z)

≤ p(z)(VH −KH)− FB(z)

ΠFB(z)
, (B.1)

where the last inequality follows from FL(z) ≥ VL for all z (regardless of φ). By (iii), the
term in (B.1) uniformly converges to 0 as u1 → 1+, implying L does as well.

Proof of Proposition 6. First, note that taking the limit as φ→ 0 is equivalent to taking the
limit as u1 →∞. For (i), using the expression for β in Lemma 1, we have that

lim
u1→∞

β = z + lim
u1→∞

ln

(
u1

u1 − 1

)
= z + ln(1) = z.

From (24), we have that q(z) = rVL
C∗1u1(u1−1)eu1z

. Therefore, to prove (ii) it suffices to show

that limu1→∞C
∗
1u1(u1 − 1)eu1z = 0 for z < z and limu1→∞C

∗
1u1(u1 − 1)eu1z =∞. Using the

expression for C∗1 in Lemma 1, we obtain

C∗1u1(u1 − 1)eu1z = (KH − VL)×
(
u1 − 1

u1

)u1

×
(
VH −KH

KH − VL
ez
)u1

u1

The first term on the right hand side is positive and independent of u1. The second term
limits to e−1 as u1 → ∞. Thus, the remaining term determines the limiting properties.
It can be written as u1y

u1 , where y ≡ VH−KH
KH−VL

ez. Notice that z < z =⇒ y < 1 =⇒
limu1→∞ u1y

u1 = 0, whereas z = z =⇒ y = 1 =⇒ limu1→∞ u1y
u1 = limu1→∞ u1 =∞. This

completes the proof of (ii).
For (iii), note that for all z ≤ z, 0 ≤ FB(z) ≤ C∗1e

u1z ≤ C∗1e
u1z. And further, C∗1e

u1z =

(KH − VL)
(
u1−1
u1

)u1
1

u1−1
→ 0 as u1 →∞. Thus, we have obtained uniform bound on FB(z)

below z, which converges to zero implying the first part of (iii). That FB(z)
u→ V (z)−KH

for z ≥ z follows from continuity of FB, FB(z) = V (z)−KH for z ≥ β, and β → z.
For (iv), the pointwise convergence above z is immediate. For z ≤ z,

0 ≤ FL(z)− VL = C∗1(u1 − 1)eu1z

= (KH − VL)

(
u1 − 1

u1

)u1
(
VH −KH

KH − VL
ez
)u1

→ (KH − VL)e−1 lim
u1→∞

yu1 .

The remainder of (iv) follows from z < z =⇒ y < 1 =⇒ limu1→∞ y
u1 = 0 and z = z =⇒

y = 1 =⇒ limu1→∞ y
u1 = 1. Finally, (v) is immediately implied by (iii) and (iv).

Proof of Theorem 3. In the proposed equilibrium candidate, for all z ∈ R, trade is immedi-
ate, W (z) = FL(z) = KH , and FB(z) = V (z)−KH . Hence, the equilibrium candidate is of
Σ(β, q) form in which β = −∞. As in the proof of Theorem 1, Conditions 3 and 2 are by
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construction of the Σ-profile. In the candidate, β = −∞, so verification of Seller Optimality
(Condition 1) is trivial: for all z, W (z) ≤ KH , so for θ ∈ {L,H}:

sup
τ∈T

Eθ
[
e−rτ (W (Zτ )−Kθ)

]
≤ KH −Kθ = Fθ(z).

Finally, the verification of Buyer Optimality (Condition 4) is identical to the one given for
the case of z > β∗ in the proof of Theorem 1.

To see that no other Σ-equilibrium exists, suppose first that Σ(β, q) was an equilibrium
with β ∈ R. The analysis from Section 3.1 again applies, and therefore FB, β, C1, C2 must
satisfy (15)-(18). Solving the system, as in Lemma 1, gives the unique solutions as

β = ln

(
KH − VL
VH −KH

)
+ ln

(
u1

u1 − 1

)
,

which is not in R when the SLC fails, contradicting the supposition. Finally, if β = ∞,
then FB(z) = 0 for all z ∈ R. But then the buyer would improve her payoff by offering KH

(leading to payoff V (z)−KH > 0) for any z. Hence, no other Σ-equilibrium exists.
The argument for uniqueness of equilibrium form follows closely the proof of Theorem 2

with two minor modifications. First, since z does not exist when the SLC does not hold, the
first statement in Lemma A.4 (i.e., that β > z) is vacuous and no longer required. Second,
the proof of Lemmas A.5 and A.6 are immediate if β = −∞ and follow the same argument
for any β >∞.

Proof of Lemma 4. We first construct the buyer’s value function under the candidate pol-
icy and show there is a unique (αm, βm) satisfying (26)-(29). We then apply a standard
verification argument to demonstrate the policy is indeed optimal.

For z ∈ (αm, βm), the buyer’s value under the candidate policy satisfies

(A− r)FB(z) = m,

which has a solution of the form

FB(z) = −m
r

+
1

1 + ez
(C1e

u1z + C2e
u2z) . (B.2)

For an arbitrary β, using the functional form of FB in (B.2), solve (28) and (29) for C1

and C2. These equations are linear so the solution is unique, denote it by C1(β) and C2(β).
Plugging the solution into (B.2), the resulting function, which is given by

fB(z; β) ≡ −m/r + (1 + ez)−1 (C1(β)eu1z + C2(β)eu2z) ,

has the following properties for arbitrary β (which are straightforward to verify).

(i) fB(·; β) is continuously differentiable, strictly convex, and has a unique global mini-
mum.

(ii) fB(z; β) is continuous and increasing in β for all z < β.

(iii) ∂
∂z
fB(z; β) > 0 for z close enough to β.
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(iv) fB(z; β) > V (z)−KH for all z 6= β.

An immediate implication of (i) is that (for an arbitrary β) the unique candidate α such
that ∂

∂z
fB(α; β) = 0 (i.e., such that (27) is satisfied) is αsp(β) ≡ arg minz fB(z; β). Note that

αsp(β) < β by (i) and (iii). Further, (ii) implies that fB(αsp(β); β) is strictly increasing in
β. Hence, there is at most one value for βm satisfying fB(αsp(βm); βm) = 0 (i.e., such that
(26) is also satisfied).

To see that such a βm in fact exists, note that fB(z; z) = 0 (and hence fB(αsp(z), z) < 0),
while αsp(β) → β as β → ∞ and hence limβ→∞ fB(αsp(β), β) = VH − KH > 0. Thus, we
have shown there is a unique candidate pair (αm, βm), which satisfies (26)-(29). Further,
note that because fB(αm; βm) = 0 and fB(αm; βm) > V (αm) − KH , we have that αm < z.
And since fB(βm; βm) > fB(αm; βm) (since αm is a global minimum), we have that βm > z.

We next verify that the policy τ = inf
{
t : Ẑ 6∈ (αm, βm)

}
is indeed optimal. To do so,

note that by construction, the buyer’s value function under the candidate policy is C1 and
satisfies:

FB(z) =


0 z ≤ αm
fB(z; βm) z ∈ (αm, βm)
V (z)−KH z ≥ βm

Using a standard verification theorem (e.g., Oksendal, 2007, Theorem 10.4.1) to verify
the policy is optimal, it suffices to check that (1) FB(z) ≥ g(z) ≡ max{V (z) − KH , 0}
for all z ∈ (αm, βm), and (2) that (A − r)FB − m ≤ 0 for all z /∈ (αm, βm). That (1)
holds follow immediately from (iv) above. For (2), first note that (A − r)FB = (A − r)g
for all z /∈ (αm, βm). Next, recall that αm < z and therefore g(z) = 0 for all z ≤ αm.
Thus, (A − r)FB − m = (A − r)g − m = −m for all z ≤ αm. For z ≥ βm, (A − r)FB =
φ2

2
((2p(z)− 1)V ′(z) + V ′′(z)) − r(V (z) − KH). Noting that (2p(z) − 1)V ′(z) + V ′′(z) = 0

and βm > z implies that (A− r)FB < 0, which is clearly sufficient for (2).

Proof of Proposition 7. That the buyer’s value function is equal to the one from the due
diligence problem in Lemma 4 follows the same logic as given in the proof of Proposition 1.
Verifying that the proposed candidate is an equilibrium then follows closely the proof of
Theorem 1. Conditions 3 and 2 are again by construction. Seller Optimality (Condition 1)
for θ = H is immediate. For θ = L, it is again by construction that FL(z) = ELz [e−rT (β)]KH

and therefore any τ ∈ T (β) achieves the same payoff (the only difference is the law of motion
of Z). To verify Buyer Optimality (Condition 4), we must first incorporate the option to
terminate into the buyer’s policy and modify conditions (B.1) and (B.3) to account for the
cost of investigation as follows. For all z:

FB(z) ≥ max{V (z)−KH , 0}, (B.1’)

FB(z) ≥ Ez[e
−rτFB(Ẑτ )− τm]. (B.3’)

The proof of Lemma 4, demonstrates that the buyer’s value function satisfies (B.1’) and
(B.3’). Thus, all that remains is to check (B.2).

Following a similar argument to the one used in the proof of Theorem 1, if z, z′ ≤ αm
then J(z, z′) = FB(z) = 0. If z, z′ ∈ [αm, βm), then using the functional form for FB (from
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Lemma 4) and FL (implied by (22)) we get that

d

dz′
J(z, z′) = −e

−z′(ez
′ − ez)

1 + ez︸ ︷︷ ︸
(−)

×

C1e
u1z′(u1 − 1)u1︸ ︷︷ ︸

(+)

+ C2e
u2z′(u2 − 1)u2︸ ︷︷ ︸

(+)

 ,

where the (+) signs come from the fact that u1 > 1 and u2 < 0. Thus, to verify that J(z, z′)
is decreasing in z′, it is sufficient to show that C1 > 0 and C2 > 0. From the two boundary
conditions at α, we have that

C1 = −e
−αu1m (eα(u2 − 1) + u2)

r(u1 − u2)
> 0

C2 =
e−αu2m (eα(u1 − 1) + u1)

r(u1 − u2)
> 0,

which verifies that J(z, z′) is decreasing in z′ for z, z′ ∈ [αm, βm). If z < αm < z′ < βm, then

J(z, z′) ≡ p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′)

≤ p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′) +

p(αm)− p(z)

p(αm)
(FL(z′)− FL(αm))

=
p(αm)− p(z)

p(αm)
(VL − FL(αm)) +

p(z)

p(αm)

(
p(z′)− p(αm)

p(z′)
(VL − FL(z′)) +

p(αm)

p(z′)
FB(z′)

)
=
p(αm)− p(z)

p(αm)
(VL − FL(αm)) +

p(z)

p(αm)
J(αm, z

′)

≤ p(αm)− p(z)

p(αm)
(VL − FL(αm)) +

p(z)

p(αm)
FB(αm) = J(z, αm) = FB(z) = 0,

where the first inequality comes from αm > z and FL(z′) ≥ FL(αm), the subsequent equality
is from algebra, and the remaining statements follow from the definition of J and established
properties of FB in the candidate equilibrium. Thus, we have shown that J(z, z′) ≤ FB(z)
for all z ≤ z′ < β. If z′ ≥ βm, then J(z, z′) = V (z) −KH ≤ FB(z) (from Lemma 4), which
completes the verification of (B.2).

Proof of Lemma 5. As in the proof of Lemma 4, we proceed by constructing the candidate
value function, demonstrate there is a unique βλ satisfying the boundary conditions, and
then verify the candidate policy is indeed optimal.

For z < βλ, the buyer’s value function satisfies (32), which has solution of the form

FB(z) =
λ

r + λ
(V (z)−K(z)) +

1

1 + ez
(
C1e

û1z + C2e
û2z
)

where (û1, û2) = 1
2

(
1±

√
1 + 8(λ+r)

φ2

)
. The boundary condition (16) requires C2 = 0, and
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jointly solving (17)-(18) for C1 and βλ yields:

β∗λ = ln

(
û1

û1 − 1

(λ+ r)KH − rVL
r(VH −KH)

)
C∗1 =

(λ+ r)KH − rVL
(r + λ)(û1 − 1)

e−û1βλ .

Thus, there is a unique candidate solution. To verify that the policy τ = inf
{
t : Ẑ ≥ βλ

}
is

optimal, note that by construction, the buyer’s value function under the candidate policy is
C1 and satisfies:

FB(z) =

{
λ
r+λ

(V (z)−K(z)) + 1
1+ez

C∗1e
û1z z ≤ β∗λ

V (z)−KH z ≥ β∗λ

Analogous to the proof of Lemma 4, it suffices to check that (1) FB(z) ≥ V (z)−KH for
all z ≤ βλ, and (2) that (A− (r + λ))FB(z) + λ(V (z)−K(z)) ≤ 0 for all z ≥ βλ. To verify

(1), make a change of variables from z to p (i.e., substitute ln
(

p
1−p

)
for z into both FB and

V ). Note that FB is convex in p, while V is linear. Given that both the slopes and values
match at p(βλ), FB must lie everywhere above to the left. For (2), since AFB = 0 for z > βλ,
it suffices to show that V (z) − KH ≥ λ

λ+r
(V (z) − K(z)) for all z ≥ βλ. Making the same

change of variables from z to p, observe that both V −KH and λ
λ+r

(V −K) are linear in p

and that V −KH > λ
λ+r

(V −K) for all p > p̂ ≡ (r+λ)KH−rVL
r(VH−VL)+λKH

. The final step is to observe

that ln
(

p̂
1−p̂

)
= βλ − ln

(
û1

û1−1

)
< βλ.

Proof of Proposition 8. The proof follows the same steps as Proposition 7 with the exception
of verifying Buyer Optimality (Condition 4). In order to do so, we must modify condition
B.3 to account for the possibility of the fully revealing information arrival as follows:

FB(z) ≥ Ez

[∫ τ

0

λe−(r+λ)s(V (Ẑs)−K(Ẑs))ds+ e−(r+λ)τFB(Ẑτ )

]
(B.3”)

The proof of Lemma 5 and the fact that the buyer’s value function in equilibrium is the
same as in the due diligence problemshows that FB satisfies (B.3”) and (B.1). Thus, all that
remains is to check (B.2) and for this, the same argument as given in the proof of Theorem 1
applies. In particular, d

dz′
J(z, z′) has the same form as given in (A.4) where u1 is replaced

by û1 and therefore is strictly negative for all z′ ∈ (z, βλ).
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