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1. Introduction

In an important contribution, Alvarez and Jermann (2005) lay the foundations for deriving bounds when

the stochastic discount factor (hereby, SDF), from an asset pricing model, can be decomposed into a perma-

nent component and a transitory component (see also the contribution of Hansen, Heaton, and Li (2008),

and Hansen and Scheinkman (2009)). The purpose of this paper is to propose a bounds methodology to

assess asset pricing models, and to improve on the Alvarez and Jermann (2005) bounds.

We first ask and address two methodological questions. First, is it possible to generalize the bounds

framework to accommodate an asset space with a dimension greater than three? Our rationale is that the

bounds postulated in Alvarez and Jermann (2005) hinge on the return properties of the risk-free bond, the

long-term discount bond, and the equity portfolio. Second, can one modify the bounds framework to a

setting where some assets have a negative expected rate of return and, hence, generalize the approach?

Building on our treatment, we turn to a question of economic interest: What can be learned about asset

pricing models that consistently price the risk-free bond, long-term discount bond, equity portfolios, and

insurance assets (where high price is accompanied by low expected payout, yielding a negative expected

rate of return), when the SDF has a permanent and a transitory component? Claims on market variance that

depict insurance-like features are now actively traded, and some SDFs, such as those based on long-run risk

models, incorporate a role for market variance (e.g., Bansal and Yaron (2004)). We solve the eigenfunction

problem of Hansen and Scheinkman (2009) for asset pricing models in the long-run risk class, enabling us

to evaluate their performance based on our bounds on the permanent and transitory components.1

In our setup, we develop the lower bound on the variance of the permanent component of SDFs, the

lower (upper) bound on the size of the permanent (transitory) component of SDFs, and then a lower bound

on the variance of the ratio of the permanent to the transitory component of SDFs. The lower bound on the

variance of the permanent component of SDFs and the lower (upper) bound on the size of the permanent

(transitory) component can be viewed as a generalization of the Alvarez and Jermann (2005) bounds.

Our lower bound on the variance of the ratio of the permanent to the transitory component of SDFs al-

lows us to assess whether SDFs implied from asset pricing models are capable of describing the additional

dimension of comovement between bond, equity, and other markets, and has no analog in Alvarez and Jer-

1Besides, our bounds framework is amenable to investigating the suitability of SDFs to address several asset pricing puzzles
together, for instance, by combining elements of the value premium, the equity premium, the risk-free return, and the bond risk
premium. In this regard, our work is related to, among others, Campbell, Hilscher, and Szilagyi (2008), Cochrane and Piazzesi
(2005), Koijen, Lustig, and Van Nieuwerburgh (2009), Lettau and Wachter (2007), and Yang (2009, 2010).
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mann (2005).2 A salient feature of our bounds is that they incorporate information from average returns as

well as the variance-covariance matrix of returns. Probing further, our analysis reveals that non-normalities

in the data can bring deviations between our measures and the Alvarez and Jermann (2005) counterpart.

The posited bounds, in conjunction with an analytical solution to the eigenfunction problem, can pro-

vide a way to discern whether the time-series properties underlying an asset pricing model are consistent

with observed data from financial markets. In this respect, we focus first on a long-run risk model that

features a small but persistent component in consumption, as proposed in Bansal and Yaron (2004), while

the second model introduces non-gaussian shocks to the consumption growth process, as proposed in Kelly

(2009). Using the eigenfunction approach, we show that the transitory and permanent components of the

SDF in the model of Bansal and Yaron are lognormally distributed, while the permanent component of the

SDF in the model of Kelly is not lognormally distributed. Having both model types in our investigation

corroborates that a broad set of distributional properties can be accommodated within our approach. The

importance of studying long-run risks is also recognized by Hansen (2009).

Moving to the empirical investigation, our bounds facilitate a number of insights about the performance

of long-run risk models. One implication of our findings is that the variance of the permanent component

of the SDF in long-run risk models is of an order lower than the corresponding variance reflected by the

returns data. Moreover, the size of the transitory component of SDFs in long-run risk models is more

pronounced compared to the data counterparts, revealing a source of the limitation in characterizing the

behavior of bond returns. Relevant to our findings, we develop a theoretical restriction aimed at reconciling

the observation that an asset pricing model can match the equity premium but does not offer a sufficiently

volatile permanent component of the SDF.

We also show that the model-based variance of the ratio of the permanent to the transitory component

of the SDF is insufficiently high, conveying the need to describe more plausibly the joint movement of

returns of bonds and equities. Taken all together, our bounds-based non-parametric approach highlights the

dimensions of difficulty in reconciling observed asset returns under commonly adopted parameterizations

of long-run risk models. Our work belongs to a list of studies that explores the implications of long-run

risk models, as outlined, for example, in Bansal, Kiku, and Yaron (2009), Beeler and Campbell (2009),

Ferson, Nallareddy, and Xie (2010), Hansen, Heaton, and Li (2008), and Yang (2009, 2010).

2The permanent (transitory) component of SDFs is useful for consistently pricing equities and insurance assets (bonds), while
the ratio of the permanent to the transitory components of SDFs links the underlying markets. The importance of linking markets
has been emphasized by Campbell (1986), Campbell and Ammer (1993), Fama and French (1993), Connolly, Sun, and Stivers
(2005), Baele, Bekaert, and Inghelbrecht (2010), Colacito, Engle, and Ghysels (2010), and David and Veronesi (2009).
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One may ask: What is the advantage of employing variance bounds to assess asset pricing models

versus matching some moments of the returns data? The heart of the bounds approach is that bounds

are derived under the assumption that the permanent and transitory components of SDFs correctly price

a set of assets. On the other hand, the approach of matching some sample moments of the returns data

may fail to internalize broader aspects of asset return dynamics. Our variance bounds could be adopted

as a complementary device to examine the validity of a model, apart from matching sample moments,

slope coefficients from predictive regressions, and correlations. In this sense, our bounds approach retains

the flavor of the Hansen and Jagannathan (1991) bounds, and yet offers the tractability of comparing the

variance of the permanent and transitory components of SDFs to those implied by the data.

The paper is organized as follows. Section 2 develops theoretical results on the bounds and investigates

their relevance in the context of Alvarez and Jermann (2005) bounds. While our approach can be employed

to study any SDF featuring permanent and transitory components, Section 3 derives the permanent and

transitory components of the SDF for the asset pricing models of Bansal and Yaron (2004) and Kelly

(2009), by solving the eigenfunction problem. Variance bounds are our yardstick for empirically evaluating

aspects of long-run risk models. Conclusions are offered in Section 4.

2. Bounds on the permanent and transitory components

This section presents theoretical bounds related to the unconditional variance of the permanent and the

transitory component of the SDFs, and the ratio of the permanent to the transitory components of SDFs.

The lower bound on the unconditional variance of the SDFs is provided in Appendix A. We also formalize

the sense in which our approach can improve on the Alvarez and Jermann (2005) bounds.

Since asset pricing models often face a hurdle of explaining asset market data based on unconditional

bounds, we develop our results in terms of unconditional bounds, instead of the sharper conditional bounds.

Appendix B presents the conditional variance bounds for completeness.

2.1. Consistent pricing of risk-free bond, long-term bond, equities, and insurance assets

We let {Mt} be the process of strictly positive pricing kernels. As in Duffie (1996) and Hansen and

Richards (1987), we use the absence of arbitrage opportunities to specify the current price of an asset that
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pays Ht+k at time t + k as

Vt [Ht+k] = EPt

(
Mt+k

Mt
Ht+k

)
, (1)

where EPt (.) represents conditional expectation under the physical probability measure P. The SDF is

represented by Mt+1
Mt

, and the gross asset return by Ht+k
Vt [Ht+k]

. Under certain conditions, the physical probability

measure is related to the (risk neutral) probability measure Q via the Radon-Nikodym representation:

dQ
dP

=
1

Vt [1t+1]
Mt+1

Mt
, and, hence, equation (1) becomes Vt [Ht+1] = Vt [1t+1]E

Q
t (Ht+1) , (2)

where EQt (.) is expectation under Q.

To differentiate returns offered by different types of asset classes, we first define Rt+1,k as the gross

return from holding, from time t to t +1, a claim to one unit of the numeraire to be delivered at time t + k.

Then, the return from holding a discount bond with maturity k from time t to t + 1, and the long-term

discount bond is, respectively,

Rt+1,k =
Vt+1 [1t+k]
Vt [1t+k]

and Rt+1,∞ ≡ lim
k→∞

Rt+1,k. (3)

The case of k = 1 in equation (3) corresponds to the return of a risk-free bond, and Rt+1,∞ corresponds to

the return of a long-term discount bond.

Moving to investment assets such as equities, we define R[+]
t+1 as the n1×1 vector of gross returns. Each

equity portfolio has a positive expected rate of return, net of the return of a risk-free bond.

Next consider insurance assets, where the discounted payoff under the Q measure dominates the P

measure counterpart and, hence, EPt (Ht+1)
Vt [1t+1]E

Q
t (Ht+1)

< 1. Let the n2×1 vector of gross returns of such assets be

denoted by R[−]
t+1.

Examples of insurance claims, considered later in our empirical exercise, include a variance swap,

which has a zero cost at entry, satisfying the payoff (e.g., Carr and Wu (2009)):

V R P t+1 ≡
∫ t+1

t
σ2

s ds − EQt

(∫ t+1

t
σ2

s ds
)

, where
∫ t+1

t
σ2

s ds≡Ht+1. (4)

The variance swap is contingent on the integrated value of instantaneous market return variance σ2
t over a

month, namely, integrated variance (e.g., Andersen, Bollerslev, Diebold, and Labys (2003)). We recognize

that put options are also associated with negative expected returns in the tails. Cochrane and Saa-Requejo
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(2000) derive tight bounds on asset prices that incorporate options in conjunction with other assets.

Consider the set of SDFs that consistently price the risk-free bond, the long-term discount bond, equi-

ties, and insurance assets,

S ≡
{

Mt+1

Mt
: E

(
Mt+1

Mt
1t+1

)
= µm, E

(
Mt+1

Mt
Rt+1,∞

)
= 1, E

(
Mt+1

Mt
R[+]

t+1

)
= ı, E

(
Mt+1

Mt
R[−]

t+1

)
= ı

}
,

(5)

where 1/µm is the return on the risk-free bond, and ı is a vector of ones of the appropriate dimension. E(.)

represents the unconditional expectation operator with respect to the physical probability measure P, where

we have suppressed the superscript P for compactness (unless stated otherwise). Moreover, let Var[.] and

Cov[., .] be the unconditional variance and the covariance, respectively, under P.

The L-measure-based bounds framework in Alvarez and Jermann (2005) is intended specifically for a

risk-free bond, a long-term discount bond, and a risky equity portfolio, whereas equation (5) allows one to

expand the asset space to a dimension beyond three, and to insurance assets.

We have two reasons to expand the set of assets to include insurance assets in our theoretical and

empirical analysis, particularly, claims on market return variance. The first reason is that market variance

constitutes an important traded quantity and an asset class (Andersen and Benzoni (2009), Carr and Lee

(2008), and Gatheral (2006)), and extant literature has shown that the time-series assumptions on the log

consumption growth process, and its conditional variance, can impose constraints on the SDF specification.

For example, SDFs implied by the Bansal and Yaron (2004) model, and its extensions, suggest restrictions

on the variance risk premium V R P t+1 (as posited in (4)). In such asset pricing models, the expected

variance risk premium is driven by both long- and short-run risks and, hence, the permanent and transitory

components of SDFs can impact the pricing of variance swaps.

The second reason is that the expected variance risk premium is negative, and we develop a bounds

framework for permanent and transitory components that can be applied to assets with negative risk premi-

ums. The viability of asset pricing models can now be judged by their ability to satisfactorily accommodate

the risk premium on a spectrum of traded assets, both maximally positive and highly negative.

2.2. Bounds on the permanent component of the SDF

Alvarez and Jermann (2005, Proposition 1), Hansen, Heaton, and Li (2008), and Hansen and Scheinkman
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(2009) show that any SDF can be decomposed into a permanent component and a transitory component.

Inspired by their analyses, we presume that there exists a decomposition of the pricing kernel Mt into a

permanent and a transitory component of the type:

Mt = MP
t MT

t , with Et
(
MP

t+1
)

= MP
t . (6)

The permanent component MP
t is a martingale, while the transitory component MT

t is a scaled long-term

interest rate. In particular,

Rt+1,∞ =
MT

t

MT
t+1

. (7)

which follows from Alvarez and Jermann (2005, Assumptions 1 and 2, and Proposition 2).

We define the 1+n1 +n2-dimensional vector as Rt+1 =
(

Rt+1,1,R
[+]
t+1,R

[−]
t+1

)
, which is the gross return

vector containing the risk-free bond, the investment assets, and the insurance assets. Assume that the

variance-covariance matrix of Rt+1, Rt+1/Rt+1,∞, Rt+1/R2
t+1,∞ are each nonsingular. Our proof follows.

Proposition 1 Under the decomposition (6), the lower bound on the unconditional variance of the perma-

nent component of SDFs Mt+1
Mt

∈ S is:

Var
[

MP
t+1

MP
t

]
≥ σ2

pc ≡




1 − E
(

Rt+1,1
Rt+1,∞

)

ı − E
(

R[+]
t+1

Rt+1,∞

)

ı − E
(

R[−]
t+1

Rt+1,∞

)




′

(
Var

[
Rt+1

Rt+1,∞

])−1




1 − E
(

Rt+1,1
Rt+1,∞

)

ı − E
(

R[+]
t+1

Rt+1,∞

)

ı − E
(

R[−]
t+1

Rt+1,∞

)




. (8)

Furthermore, when equation (8) holds, the ratio of the unconditional variance of the permanent component

to the unconditional variance of the SDF satisfies,

Var
[

MP
t+1

MP
t

]

Var
[

Mt+1
Mt

] ≥ σ2
pc

σ2
pc + 1 − µ2

m
, (9)

where σ2
pc is defined in equation (8), and µm is the mean of the SDF.

Proof: See the Appendix A.

Our variance bounds are general and are not specific to the Alvarez and Jermann (2005), Hansen,

Heaton, and Li (2008), or Hansen and Scheinkman (2009) decomposition. They apply to any SDF that can
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be decomposed into a permanent and a transitory component.

The σ2
pc in inequality (8) is computable, given the return time-series of risk-free bond, long-term bond,

equities, and insurance assets, for instance, variance swaps. In general, our bounds combine information

from the vector of average returns and the variance-covariance matrix of returns.

Although the Hansen and Jagannathan (1991) bound was not developed to differentiate between the

permanent and the transitory components of the SDF, the variance bound on the permanent component σ2
pc

is amenable to an interpretation, as in the Hansen and Jagannathan (1991) bound (see also Cochrane and

Hansen (1992)). To appreciate this feature, we let Rvs
t+1 =

∫ t+1
t σ2

s ds
Vt [1t+1]E

Q
t (

∫ t+1
t σ2

s ds) and we specialize our analysis

to a three-dimensional vector of gross returns Rv
t+1 = [Rt+1,1,R

eq
t+1,R

vs
t+1], consisting of a risk-free bond, the

equity market, and the variance swap. Notice,

Req
t+1

Rt+1,∞
' 1+ log(Req

t+1)− log(Rt+1,∞), and
Rvs

t+1

Rt+1,∞
' 1+ log(Rvs

t+1)− log(Rt+1,∞). (10)

Following Hansen and Jagannathan (1991) and Cochrane (2005, Sections 5.5–5.6), the variance bound on

the permanent component of SDFs can be interpreted as the maximum Sharpe ratio when the investment

opportunity set is comprised of an equity market with excess return relative to the long-term bond, and the

variance swap with excess return relative to the long-term bond (assuming the risk-free return is close to

zero).

Inequality (9) bounds the ratio of the variance of the permanent component of the SDF to the variance

of the SDF, which can be a useful object for understanding what time-series assumptions are necessary to

achieve consistent risk pricing across a multitude of asset markets. In addition to using the information

content of returns across different asset classes, the bounds provided in (8) and (9) are essentially model-

free and can be employed to evaluate the permanent component of any SDF, regardless of its distribution.

Koijen, Lustig, and Van Nieuwerburgh (2009) highlight the economic role of Var
[

MP
t+1

MP
t

]
/Var

[
Mt+1
Mt

]
in

affine models. When both the permanent and transitory components of the SDF are lognormally distributed,

they specifically show that Var
[

MP
t+1

MP
t

]
/Var

[
Mt+1
Mt

]
implied within their model is almost perfectly correlated

with the Cochrane and Piazzesi (2005) factor.

Finally, the lower bound on the variance of SDFs is derived in equation (A18) of Appendix A. There

is a key difference between the lower bound on the variance of SDFs and the lower bound on the variance

of the permanent component of SDFs. To be compatible with the high Sharpe ratio when the investment

7



opportunity is comprised of risk-free bond, long-term bond, equities, and insurance assets, SDFs have to

be volatile. To be compatible with the low returns of long-term bonds relative to equities, the permanent

component of SDFs has to be arguably large.

2.3. Bounds on the transitory component of the SDF

While a central constituent of any SDF is the permanent component, a second necessary constituent is

the transitory component, which equals the inverse of the return of an infinite-maturity discount bond and

governs the behavior of interest rates. Absent a transitory component, the excess returns of discount bonds

are zero, which contradicts empirical evidence (e.g., Fama and Bliss (1987), Campbell and Shiller (1991),

and Cochrane and Piazzesi (2005)).

To gauge the ability of SDFs to explain bond market data, while consistently pricing the remaining set

of assets in (5), we provide an upper bound on the variance of the transitory component of SDFs.

Proposition 2 Under the decomposition (6), the upper bound on the ratio of the unconditional variance of

the transitory component of SDF to the unconditional variance of SDF Mt+1
Mt

∈ S is

Var
[

MT
t+1

MT
t

]

Var
[

Mt+1
Mt

] ≤
Var

[
1

Rt+1,∞

]




1 − µm E (Rt+1,1)

ı − µm E
(

R[+]
t+1

)

ı − µm E
(

R[−]
t+1

)




′

(Var [Rt+1])
−1




1 − µm E (Rt+1,1)

ı − µm E
(

R[+]
t+1

)

ı − µm E
(

R[−]
t+1

)




. (11)

Proof: See Lemma 1 in Appendix A.

Inequality (11) places an upper bound on the ratio of the variance of the transitory component of SDFs

to the variance of SDFs. The variance of the transitory component of any SDF that consistently prices

bonds should be lower than the bound in equation (11).

2.4. Bounds on the ratio of the permanent to transitory component of the SDF

A third necessary feature of SDFs is their ability to link the behavior of the bond market to other

markets. In this regard, a construct suitable for understanding cross-market relationships is the ratio of the
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permanent component of the SDF to the transitory component of the SDF.

Proposition 3 Under the decomposition (6), the lower bound on the unconditional variance of the ratio of

the permanent component of the SDF to the transitory component of the SDF
MP

t+1
MP

t
MT

t+1
MT

t

is

Var




MP
t+1

MP
t

MT
t+1

MT
t


≥




1 − µmP/mT E
(

Rt+1,1

R2
t+1,∞

)

ı − µmP/mT E
(

R[+]
t+1

R2
t+1,∞

)

ı − µmP/mT E
(

R[−]
t+1

R2
t+1,∞

)




′

(
Var

[
Rt+1

R2
t+1,∞

])−1




1 − µmP/mT E
(

Rt+1,1

R2
t+1,∞

)

ı − µmP/mT E
(

R[+]
t+1

R2
t+1,∞

)

ı − µmP/mT E
(

R[−]
t+1

R2
t+1,∞

)




, (12)

where µmP/mT is the mean of the ratio of the permanent component of the SDF to the transitory component

of the SDF.

Proof: See the Appendix A.

Because the permanent and the transitory components of the SDFs are not independent,

Cov

[
MP

t+1

MP
t

,

(
MT

t+1

MT
t

)−1]
= µmP/mT − E (Rt+1,∞) . (13)

Hence, in contrast to Proposition 1 (Proposition 2) that examines separately the consistent pricing of eq-

uities and insurance assets (bonds), Proposition 3 discriminates, for a given comovement value µmP/mT −
E (Rt+1,∞) implied from asset pricing models, among those SDF that are capable of describing the observed

comovement of bond returns and other asset returns.

Under the assumption that µmP/mT is fixed, Proposition 3 provides the lower bound on the variance of

the ratio of the components of the SDF, the purpose of which is to assess whether the SDFs can explain

the comovement in (13). The bound in Proposition 3 is new, with no counterpart in Alvarez and Jermann

(2005).

When a diagnostic test, for instance, the Hansen and Jagannathan (1991) variance bound, rejects an

asset pricing model, it often fails to ascribe model failure specifically to the inadequacy of the permanent

component of SDFs, the transitory component of SDFs, or to a combination of both. Thus, our framework

offers the pertinent measures to investigate which dimension of the SDF can be modified, when the goal

is to capture return variation in a single market or across markets. We revisit this issue when examining

9



models in the long-run risk class by analytically solving an eigenfunction problem and then invoking our

Propositions 1, 2, and 3.

Each of the bounds derived in Propositions 1, 2, and 3 are unconditional bounds. In Appendix B, we

scale the returns by conditioning variables and propose bounds that incorporate conditioning information.

2.5. Distinction from the Alvarez and Jermann (2005) bounds

Germane to the bounds developed in Propositions 1 and 2 are two central questions: How are the

bounds distinct from the corresponding bounds in Propositions 2 and 3 in Alvarez and Jermann (2005)? In

what way does our treatment improve on Alvarez and Jermann (2005)?

To address these questions, we first note that Alvarez and Jermann (2005) define the L-measure of a

random variable u as

L[u] ≡ f [E (u)] − E( f [u]), with f [u] = log(u). (14)

Using L[u] = log(E (u))−E(log(u)) as a measure of volatility, i.e, Var[u] = E
(
u2

)− (E(u))2, Alvarez and

Jermann (2005) develop their bounds in terms of the L-measure. Under their characterizations, a one-to-

one correspondence exists between the L-measure and the variance measure of log(u), when u is distributed

lognormally, as in L[u] = 1
2Var [log(u)].

Still, discrepancies between the two dispersion measures can get magnified under departures from

lognormality, for example Kelly (2009), where neither the SDF nor the permanent component are log-

normally distributed, as captured by |L[u]− 1
2Var [log(u)] | > 0. Nonetheless, even under lognormality,

L[u] 6= 1
2Var [u], as can be discerned from our Example 2 (shown shortly).

The following examples further illustrate some differences in the permanent and transitory components

of the SDF across models, in our treatment and in that of Alvarez and Jermann (2005).

2.5.1. L-measure versus the variance measure in example economies

Example 1 (Alvarez and Jermann (2005, page 1981)). Suppose the SDF is Mt+1
Mt

= β
(

ct+1
ct

)−γ
, and con-

sumption growth is independently and identically distributed. In this economy, interest rates are constant,

10



hence,

Rt+1,1 = Rt+1,∞ = a0 > 1, which implies
Mt+1

Mt
=

1
a0

MP
t+1

MP
t

. (15)

The L-measure of Alvarez and Jermann implies

L
[

MP
t+1

MP
t

]
= L

[
Mt+1

Mt

]
,

L
[

MP
t+1

MP
t

]

L
[

Mt+1
Mt

] = 1,
L

[
MT

t+1
MT

t

]

L
[

Mt+1
Mt

] = 0. (16)

On the other hand, the variance measure implies

Var
[

MP
t+1

MP
t

]
= a2

0Var
[

Mt+1

Mt

]
,

Var
[

MP
t+1

MP
t

]

Var
[

Mt+1
Mt

] = a2
0 > 1,

Var
[

MT
t+1

MT
t

]

Var
[

Mt+1
Mt

] = 0, (17)

which follows from (15) and invokes R−1
t+1,∞ = MT

t+1/MT
t . ♣

The gist of Example 1 is that the lower bound on the size of the permanent component in Alvarez and

Jermann (2005) is
E

(
log

(
Req

t+1
Rt+1,1

))
−E

(
log

( Rt+1,k
Rt+1,1

))

E
(

log
(

Req
t+1

Rt+1,1

))
+ L

[
1

Rt+1,1

] = 1, while it is a2
0 > 1 based on our Proposition 1. As the

SDF only has shocks to the permanent component, the upper bound on the size of the transitory component,

i.e.,
L
[

1
Rt+1,∞

]

E
(

log
(

Req
t+1

Rt+1,1

))
+ L

[
1

Rt+1,1

] , is zero under both treatments.

Example 2 (Alvarez and Jermann (2005, page 1997)). Suppose the log of the unnormalized pricing kernel

evolves according to an AR(1) process,

log(Mt+1) = log(β) + ς log(Mt) + εt+1, where εt+1 ∼N
(
0,σ2

ε
)
, (18)

with |ς|< 1. Then, the SDF is,

Mt+1

Mt
= exp

(
A0 + (ς−1)

t

∑
j=1

ς j−1εt− j+1 + εt+1

)
, where (19)

A0 ≡ log(β) − (
1− ςt) log(β) + (ς−1)ςt log(M0) . (20)

Equations (19)–(20) imply a risk-free return Rt+1,1 = exp

(
−A0− (ς−1)

t
∑
j=1

ς j−1εt− j+1− 1
2 σ2

ε

)
and log
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excess bond holding return ht [k] = log
(

Rt+1,k
Rt+1,1

)
= σ2

ε
2

(
1− ς2(k−1)

)
. We can express the transitory and per-

manent components of the SDF for a large k as

MT
t+1

MT
t

= exp

(
−σ2

ε
2

(
1− ς2(k−1)

)
+ A0 + (ς−1)

t

∑
j=1

ς j−1εt− j+1 +
1
2

σ2
ε

)
and (21)

MP
t+1

MP
t

= exp
(
−σ2

ε
2

ς2(k−1) + εt+1

)
. (22)

Now,

L
[

Mt+1

Mt

]
=

1
2

(ς−1)2 σ2
ε

(
1− ς2t

1− ς2

)
+

1
2

σ2
ε , L

[
MP

t+1

MP
t

]
=

1
2

σ2
ε , L

[
MT

t+1

MT
t

]
=

1
2

(ς−1)2 σ2
ε

(
1− ς2t

1− ς2

)
.

(23)

Further, under our treatment, the variance of the SDF is

Var
[

Mt+1

Mt

]
=

(
exp

(
(ς−1)2 σ2

ε

(
1− ς2t

1− ς2

)
+σ2

ε

)
−1

)
× exp

(
2A0 +(ς−1)2 σ2

ε

(
1− ς2t

1− ς2

)
+σ2

ε

)
,

(24)

the variance of the permanent component is

Var
[

MP
t+1

MP
t

]
=

(
exp

(
σ2

ε
)−1

)× exp
((

1− ς2(k−1)
)

σ2
ε

)
, (25)

and the variance of the transitory component is

Var
[

MT
t+1

MT
t

]
=

(
exp

(
(ς−1)2 σ2

ε

(
1− ς2t

1− ς2

))
−1

)
× exp

(
σ2

ες2(k−1) +2A0 +(ς−1)2 σ2
ε

(
1− ς2t

1− ς2

))
,

(26)

and they do not coincide with the L-theoretic counterparts in (23). ♣

Figure 1 plots the L-measure and the variance measure of the permanent and the transitory component,

with ς = 0.90, β = 0.998, while setting σ2
ε to 0.03 or 0.40. First, a higher level of shock uncertainty

σ2
ε translates into a higher Var

[
MP

t+1
MP

t

]
. Second, when the pricing kernel is highly persistent, a disparity

between the L-measure and the variance measure can be observed under our assumed ς and across the

bond maturity k. While omitted here to save on space, the basic message, namely, that there are intrinsic

differences between the two dispersion measures, obtains also under conditioning information.

[Fig. 1 about here.]
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2.5.2. Under what situations the bounds based on the variance measure may be preferable?

Before proceeding, let Re
t+1 ≡ [Rt+1,1,R

eq
t+1] be a two-dimensional vector of gross returns containing

the risk-free bond and an equity portfolio.

We note that the bound on the size of the permanent (transitory) component in Alvarez and Jermann

(2005) is derived under the assumption that E
(

log
(

Req
t+1

Rt+1,1

))
+L

[
1

Rt+1,1

]
> 0, or equivalently, E

(
log

(
Req

t+1

))
+

log
(

E
(

1
Rt+1,1

))
> 0, such that the SDFs correctly price the risk-free bond, the long-term discount bond,

and the single equity portfolio. Keeping the above in mind, the following aspects merit further discussion.

First, as can be inferred from the properties of the L-measure (see the Appendix A in Alvarez and

Jermann (2005)), the bounds they derive are designed for at most three assets: the risk-free bond, the long-

term discount bond, and the equity portfolio, with no obvious ways to generalize to the dimension of asset

space beyond three.

Second, furthermore, to push an argument, if E
(
log

(
Req

t+1

))
< 0, then E

(
log

(
Req

t+1

))−E (log(Rt+1,∞))<

0. Thus, for instance, if one were to employ the risk-free bond, the long-term discount bond, and an asset

with a negative expected rate of return, the lower bound on the L-measure of the permanent component of

the SDF, i.e., L
[

MP
t+1

MP
t

]
≥ E

(
log

(
Req

t+1

))−E (log(Rt+1,∞)), will be negative. This has two ramifications.

One, since the L-measure of the permanent component, if it exists, of any SDF is positive, even a constant
MP

t+1
MP

t
= 1 would be seen as correctly pricing assets. Two, the lower (upper) bound on the size of the perma-

nent (transitory) component of the SDF (see Propositions 2 and 3 in Alvarez and Jermann (2005)) ceases

to be a well-defined object.

Even in the setting of the risk-free bond, the long-term discount bond, and the equity portfolio, some

conceptual differences between the two treatments can be highlighted. For Re
t+1, the lower bound on the

variance of the permanent component of the SDF in our Proposition 1 reduces to

σ2
pc =

(
ı − E

(
Re

t+1

Rt+1,∞

))′ (
Var

[
Re

t+1

Rt+1,∞

])−1 (
ı − E

(
Re

t+1

Rt+1,∞

))
, (27)

with the understanding that ı refers to a two-dimensional vector of ones. Equation (27) is the variance of

M∗P
t+1

M∗P
t

= 1 +
(

ı − E
(

Re
t+1

Rt+1,∞

))′ (
Var

[
Re

t+1

Rt+1,∞

])−1 (
Re

t+1

Rt+1,∞
− E

(
Re

t+1

Rt+1,∞

))
. (28)

Our lower bound on the variance of the permanent component of the SDF is σ2
pc = Var

[
M∗P

t+1
M∗P

t

]
and, hence,

13



(28) can be viewed as the solution to the problem:

min
MP

t+1
MP

t

Var
[

MP
t+1

MP
t

]
subject to (29)

E
((

MP
t+1

MP
t

)(
MT

t+1

MT
t

)
Re

t+1

)
= ı, E

(
MP

t+1

MP
t

)
= 1,

MT
t+1

MT
t

= R−1
t+1,∞. (30)

Regardless of the probability distribution of MP
t+1

MP
t

, our results pertain to bounds on variance.

Elaborating on the above, denote a′1 = (1,0) and a′2 = (0,1). Under this representation, the risk-free

return is a′1Re
t+1 and the equity return is a′2Re

t+1. When the set of assets includes the risk-free bond, the

long-term discount bond, and the equity portfolio, the Alvarez and Jermann lower bound is the L-measure

of the permanent component,

min
MP

t+1
MP

t

L
[

MP
t+1

MP
t

]
= E

(
log

(
a′2Re

t+1

a′1Re
t+1

))
− E

(
log

(
Rt+1,∞

a′1Re
t+1

))
= E

(
log

(
a′2Re

t+1

Rt+1,∞

))
. (31)

Yet, it is not possible to find an analytical expression for the permanent component of SDFs, namely, M̃P
t+1

M̃P
t

such as L
[

M̃P
t+1

M̃P
t

]
= E

(
log

(
a′2Re

t+1
Rt+1,∞

))
. To see the reason, we use the definition of the L-measure, whereby

L

[
M̃P

t+1

M̃P
t

]
= log(1) − E

(
log

(
M̃P

t+1

M̃P
t

))
, (since E

(
M̃P

t+1

M̃P
t

)
= 1). (32)

Therefore, we can at most deduce that E
(

log
(

M̃P
t+1

M̃P
t

))
= E

(
log

(
Rt+1,∞

a′2Re
t+1

))
, and it may not be possible

to recover M̃P
t+1

M̃P
t

analytically in terms of the vector of asset returns. Consequently, the lower bound on the

L-measure of the permanent component of SDF does not satisfy the definition of the L-measure.

Our approach potentially improves on the treatment in Alvarez and Jermann (2005) bounds by deriving

the unconditional lower bound on the variance of the permanent and transitory component in Proposi-

tions 1 and 2. Specifically, our treatment of bounds can accommodate an environment where some assets

have a negative expected rate of return, including the out-of-the-money index put options, and it is not

necessarily limited to assets with a positive expected rate of return. Additionally, our bounds incorporate

the information in both the average returns and the variance-covariance matrix of asset returns, whereas
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the lower bound on the L-measure is operationalized through average returns.

2.6. Lessons from a comparison with Alvarez and Jermann (2005) bounds in the data dimension

Recapping our theoretical results so far, the first type of bounds we propose are on the variance of the

permanent component of SDFs, and on the relative contribution of the variance of the permanent compo-

nent to the variance of SDFs. Such bounds are beneficial for characterizing the restrictions imposed by

time-series assumptions of asset pricing models. Next, we derive an upper bound on the relative contri-

bution of the variance of the transitory component to the variance of SDFs, which is a potentially useful

tool for disentangling which time-series assumptions on the consumption growth process can more aptly

capture observed features of the bond market. Finally, we provide a lower bound on the variance of the

relative contribution of the permanent to the transitory component of SDFs, which can establish the link

between bond pricing and the pricing of other assets. Our bounds, thus, provide a set of dimensions along

which one could appraise asset pricing models.

Still, some empirical questions remain with respect to observed data in the financial markets: What

is gained by generalizing the L-measure–based setup in Alvarez and Jermann (2005), when applied to

the risk-free bond, the long-term bond, and the equity market? In what sense do our proposed bounds

quantitatively differ from Alvarez and Jermann (2005)?

To facilitate this objective, here we follow Alvarez and Jermann (2005) in the choice of three assets,

the sample period of 1946:12 to 1999:12 (637 observations), as well as expressing the point estimates from

the L-measure and, hence, from the variance measure in annualized terms. Specifically, we rely on data

(http://www.econometricsociety.org/suppmat.asp?id=61&vid=73&iid=6&aid=643) on the risk-free return,

a single equity return (optimal growth portfolio based on 10 CRSP Size-Decile portfolios and the equity

market return), and bond yield with maturity of 25 years. The 90% confidence intervals are also reported

(in square brackets), which are based on 10,000 random samples of size 637 from the data and a block

bootstrap.3

3We sample the return observations in blocks of consecutive observations instead of individual observations, to account for
any dependency in the returns data. The data is divided into k∗ non-overlapping blocks of length l∗, where sample size T = k∗l∗
(e.g., Lahiri (2003)). Then, we generate b = 10,000 random samples of size T from the original data, where the sampling is based
on 12 blocks. We use each of the generated samples to obtain the estimates of variance bounds, generically denoted by Vb, for
b = 1, . . . ,10,000. Following Davison and Hinkley (1997), the 90% bootstrap confidence interval for the variance bound, V , is
obtained as

[
2V −q

(
1− α

2
)
, 2V −q

( α
2
)]

, where α = 0.10, and q
( α

2
)

is the quantile such that 500 of the bootstrap statistics{
Vb

}
b=1,...,10,000 are less than or equal to q

( α
2
)
.
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L
[

MP
t+1

MP
t

]
Var

[
MP

t+1
MP

t

] L
[

MP
t+1

MP
t

]

L
[

Mt+1
Mt

]
Var

[
MP

t+1
MP

t

]

Var
[

Mt+1
Mt

]
L
[

MT
t+1

MT
t

]

L
[

Mt+1
Mt

]
Var

[
MT

t+1
MT

t

]

Var
[

Mt+1
Mt

]

Estimate 0.184 1.396 0.955 0.931 0.001 0.001

90% CI [0.165,0.205] [1.098,1.622] [0.948,0.963] [0.919,0.943] [0.000,0.001] [0.001,0.001]

There are two lessons that can be drawn. First, our exercise suggests that our bounds are broadly

different from Alvarez and Jermann (2005). Second, instead of L
[

MP
t+1

MP
t

]
being approximately 1

2Var
[

MP
t+1

MP
t

]
,

the discrepancy between L
[

MP
t+1

MP
t

]
and 1

2Var
[

MP
t+1

MP
t

]
is large, implying that the permanent component is far

from being distributed normally in logs. This finding essentially suggests that the skewness and kurtosis of

the permanent component of SDFs may be relevant to asset pricing, features key to the generalizations of

Kelly (2009) and Yang (2010).

3. Models where the SDF is a function of the market variance and contains

a permanent and a transitory component

Assumptions on consumption growth, combined with Epstein and Zin (1991) recursive utility prefer-

ences, produce SDFs in the long-run risk model of Bansal and Yaron (2004) that are related to market

variance.4 A model feature relevant to our study, as we highlight, is that both the permanent and the tran-

sitory component of the SDF embed market volatility, and consistently price claims on market volatility.

Here we aim to contribute to the literature in two ways. First, we analytically solve the eigenfunction

problem to determine the permanent and transitory components of the SDFs in the long-run risk class,

focusing on the Bansal and Yaron (2004) model where the SDF is lognormal, and also on the Kelly (2009)

model where the SDF is not lognormal. Second, we apply our variance bounds to examine how the time-

series dynamics of nondurable consumption growth could be modified to improve model performance.

To be able to analytically solve the eigenfunction problems, where the SDFs are both lognormal as well

as non-lognormal, can enrich the setting for researching the relevance of bounds in Propositions 1, 2, and 3,

4Recent studies include, among others, Bansal, Dittmar, and Kiku (2009), Bansal, Kiku, and Yaron (2009), Beeler and
Campbell (2009), Constantinides and Ghosh (2008), Croce, Lettau, and Ludvigson (2008), Ferson, Nallareddy, and Xie (2010),
Kaltenbrunner and Lochstoer (2010), Kelly (2009), Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010), Lettau and Lud-
vigson (2004), Malloy, Moskowitz, and Vissing-Jorgensen (2009), Parker and Julliard (2005), Yang (2010), Yu (2007), and Zhou
and Zhu (2009). Among the contributions on understanding the behavior of claims on market variance and market volatility, we
mention, among others, Bakshi, Madan, and Panayotov (2010), Bollerslev, Sizova, and Tauchen (2009), Bollerslev, Tauchen, and
Zhou (2009), Carr and Wu (2009), and Drechsler and Yaron (2009).
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even though any asset pricing model featuring permanent and transitory components can be employed.

Some examples include Aı̈t-Sahalia, Parker, and Yogo (2004), Barro (2006), Bekaert and Engstrom (2010),

Campbell and Cochrane (1999), Gabaix (2009), Guvenen (2009), Ju and Miao (2009), Routledge and Zin

(2010), and Wachter (2009).

3.1. Eigenfunction problem in the Bansal and Yaron (2004) model, where the SDF is lognormal

To determine the permanent and transitory components of the SDF through the eigenfunction problem,

we specify the evolution of (log) nondurable consumption growth gt+1 (Bansal and Yaron (2004)) as,

gt+1 = µ+ xt + σt ηt+1, xt+1 = ρxt + ϕe σt et+1, (33)

σ2
t+1 = σ2 + ν1

(
σ2

t −σ2) + σω ωt+1, ωt+1, et+1, ηt+1 ∼ i.i.d N (0,1) . (34)

In the model, xt is a persistently varying component of the expected consumption growth rate, and σ2
t is

the conditional variance of consumption with unconditional mean σ2. Under the Epstein and Zin (1991)

recursive utility, the time-series dynamics (33)–(34) produce a SDF that can be expressed as a function of

market variance, and can be analytically separated into a permanent and a transitory component.

Proposition 4 Solving the eigenfunction problem, the permanent and transitory components of the SDF in

the long-run risk model of Bansal and Yaron (2004) are

MT
t+1

MT
t

= δ exp
(
−c

′
(Xt+1−Xt)

)
and

MP
t+1

MP
t

=
Mt+1

Mt
/

MT
t+1

MT
t

, (35)

where letting Xt =


 xt

σ2
t −σ2


, and c

′
= (c1,c2) is defined in (C32). Furthermore, the SDF Mt+1

Mt
is

Mt+1

Mt
= exp

(
ζt +D1 (gt+1−Et (gt+1))+D2 (xt+1−Et (xt+1))+D3

(
σ2

M,t+1−Et
(
σ2

M,t+1
)))

, (36)

where ζt , D1, D2, and D3 are defined in Appendix C. The innovation in the market variance σ2
M,t+1 is

σ2
M,t+1 − Et

(
σ2

M,t+1
)

=
(
1 + κ2

1 A2
1 ϕ2

e
)

σω ωt+1. (37)

Proof: See the Appendix C.
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Equation (35) is obtained by solving the eigenfunction problem of Hansen and Scheinkman (2009):

Et

(
Mt+1

Mt

1
Me

t+1

)
= δ

1
Me

t
, (38)

where MT
t = δtMe

t is the transitory component of the SDF in (36), the permanent component of the SDF

satisfies Mt = MP
t MT

t , and δ is the dominant eigenvalue.

In the setting of (36), log
(

Mt+1
Mt

)
is distributed normally and, hence, Mt+1

Mt
is distributed lognormally.

The derived solution (35) is pivotal to testing long-run risk models by examining bounds on the permanent

and transitory components of the SDF.

3.2. Eigenfunction problem in the Kelly (2009) model, where the SDF is not lognormal

Consider now Kelly (2009), who modifies the long-run risk model to include heavy-tailed shocks while

maintaining the Epstein and Zin (1991) recursive utility. In this modification, non-gaussian tails in con-

sumption growth are governed by a tail risk state variable, Λt .

gt+1 = µ + xt + σg σtzg,t+1 +
√

Λt Wg,t+1, xt+1 = ρx xt + σx σt zx,t+1, (39)

σ2
t+1 = σ2 (1−ρσ) + ρσ σ2

t + σσ zσ,t+1, Λt+1 = Λ(1−ρΛ) + ρΛ Λt + σΛ zΛ,t+1, (40)

zg,t+1, zx,t+1, zσ,t+1, zΛ,t+1 ∼ i.i.d N (0,1) , Wg,t+1 ∼ Laplace(0,1). (41)

The z shocks are standard normal and independent. In addition to gaussian shocks, the consumption growth

depends on non-gaussian shocks Wg, where the Wg shocks are Laplace-distributed variables with mean zero

and variance 2, and independent. Wg shocks are independent of z shocks.

Proposition 5 Solving the eigenfunction problem, the permanent and transitory components of the SDF in

the model of Kelly (2009) are

MT
t+1

MT
t

= δ exp
(
−c

′
(Zt+1−Zt)

)
and

MP
t+1

MP
t

=
Mt+1

Mt
/

MT
t+1

MT
t

, (42)

where letting Zt =




xt

σ2
t −σ2

Λt −Λ


, and c

′
= (c1,c2,c3) is defined in (D35)–(D37). Furthermore, the SDF
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Mt+1
Mt

is

Mt+1

Mt
= exp(ξt + D1 (gt+1−Et (gt+1)) + D2 (xt+1−Et (xt+1))

+ D3
(
σ2

Mt+1−Et
(
σ2

Mt+1
))

+ D4 (Λt+1−Et (Λt+1))
)
, (43)

where ζt , D1, D2, D3, and D4 are defined in Appendix D. The innovation in market variance σ2
M,t+1 is

σ2
M,t+1 − Et

(
σ2

M,t+1
)

= λσ
(
σ2

g + κ2
1 A2

x σ2
x
)

σ2
σ + 2λΛ σ2

Λ. (44)

Proof: See the Appendix D.

While the transitory component of the SDF is lognormally distributed, the permanent component of

the SDF, and the SDF itself, are not lognormally distributed. Both the log of the permanent component of

the SDF and the log of the SDF have non-normal distributions due to non-gaussian shocks Wg.

3.3. The information content of variance bounds on permanent and transitory components

Solving the eigenfunction problems, which decomposes the SDF into a permanent and a transitory

component, in turn can be used to empirically evaluate models in the long-run risk class. Our thrust is

to use the variance measure, and such an analysis can yield insights into how economic fundamentals are

linked to SDFs, and how model performance can be enhanced by altering the properties of the permanent

and transitory components of the SDFs.

Primitive parameters are chosen consistently according to the models of Bansal and Yaron (2004) and

Kelly (2009), respectively, in Panels A and B of Table Appendix-I. Empirical results on the variance of the

permanent and transitory components of SDFs in the long-run risk models, based on 10,000 replications,

are reported in Panel A of Table 1.

Reported alongside in Panel B of Table 1 are the variance bounds obtained from two sets of data.

Specifically, SET 1 contains the risk-free bond, the long-term bond, the market, and the 25 Fama-French

equity portfolios sorted by size and book-to-market, while SET 2 contains the risk-free bond, the long-term

bond, the market, and the 25 Fama-French equity portfolios sorted by size and momentum.

To avoid missing return observations prior to 1931:07, we employ the 1931:07 to 2009:12 sample

period (942 monthly observations) to construct the bounds. The reported 90% confidence intervals (shown
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in square brackets) on variance bounds are obtained with a block bootstrap, when sampling is done with

15 blocks. We reiterate that tractable expressions are not available for the bounds based on the L-measure

when (i) there are more than three assets, and/or (ii) at least one asset has a negative expected return.

3.3.1. Variance of the permanent component of the SDF in long-run risk models could be enhanced

The variance of the permanent component Var
[

MP
t+1

MP
t

]
implied by the long-run risk model of Bansal and

Yaron (2004) is 0.034, and is lower than the data-based counterparts of 0.105 (SET 1) and 0.124 (SET 2)

per month. The impact of incorporating tails in nondurable consumption growth, as in the model of Kelly

(2009), is to elevate the estimated variance of the permanent component at 0.084. Our analysis implies

that the estimate of the size of the permanent component, displayed in Table 1 as Var
[

MP
t+1

MP
t

]
/Var

[
Mt+1
Mt

]
,

ranges between 1.095 and 1.260.5

Further, even though the model of Kelly (2009) appears to describe the set of assets better, the model-

based variance bound is still smaller than the lower bound on the variance of the permanent component.

The p-values reported in curly brackets provide a statistical confirmation that the long-run risk models do

not satisfy the lower bound on the permanent component of variance. In essence, the SDF in the long-run

models could be refined to accommodate a permanent component featuring a large variance.

Pertinent to our findings, we note that each asset pricing model reasonably mimics the equity premium

of about 6% and the risk-free return of about 2.5%.

In the formulation of Kelly (2009), the distributions of log SDF and the log of the permanent component

of the SDF are symmetric with fat tails. From the documented results, we infer that long-run risk models

could reproduce the observed variability in the permanent component of SDFs by incorporating more

flexible tail properties in the SDF and in the permanent component of the SDF. We recognize nonetheless

that there is insufficient evidence favoring the presence of skewness in nondurable consumption growth.

Thus, an avenue to enrich long-run risk models may be to incorporate durable consumption in the dynamics

of the real economy. In the spirit of our results, Yang (2010) provides evidence that durable consumption

growth is left-skewed and exhibits time-varying volatility.

5While it may be customary to report Var
[

MP
t+1

MP
t

]
/Var

[
Mt+1
Mt

]
, it is only meaningful to adopt this measure for evaluating the

contribution of the variance of the permanent component to the variance of the SDF when the permanent component of the SDF
is successful, in the first stage, in explaining asset prices (as also alluded to elsewhere, for instance, Alvarez and Jermann (2005,
pages 2008–2009)).
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3.3.2. The misspecified transitory component is a source of the incongruity of long-run risk models with

bond market data

Next, Table 1 reports the size of the transitory component Var
[

MT
t+1

MT
t

]
/Var

[
Mt+1
Mt

]
implied from the

long-run risk models, which is 0.071 and 0.015 in the models of Bansal and Yaron (2004) and Kelly

(2009), respectively.

Both long-run risk models fail the upper bound on the transitory component, as the model-implied sizes

are large compared to the data-implied entries. Thus, this part of our inquiry suggests that the adopted pa-

rameterizations may not adequately characterize the behavior of bond returns (see also Beeler and Camp-

bell (2009)). Our approach potentially identifies a source of the misalignment of the long-run risk models

with the bond market data.

3.3.3. Models may reproduce the equity premium, but they may find it onerous to satisfy the lower bound

on Var
[

MP
t+1

MP
t

]

Synthesizing aspects of Panels A and B of Table 1, the variance of the permanent component computed

from the models is low, while the size of the transitory component is high compared to the data counterparts.

Yet, the long-run risk models appear to match the equity premium and the risk-free return. This trait is also

shared by the long-run risk model with inflation of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan

(2010), where Var
[

MP
t+1

MP
t

]
is of the order of 0.09, similar to the model of Kelly (2009).

Why is it that an asset pricing model can come close to matching the observed equity premium, and

at the same time not satisfy the lower bound on the permanent component of the SDF? Lemma 2 in Ap-

pendix E addresses this question and establishes the relevance of a bound on Cov
[(

Mp
t+1

Mp
t

)2
,
(

MT
t+1

MT
t

)2
]

.

Specifically, we derive a restriction implied by a model that explains the equity premium puzzle (i.e., the

volatility of the SDF is higher than the Hansen and Jagannathan (1991) volatility bound) and produces

modest variability in the permanent component of the SDF. We have verified that long-run risk models fail

the restriction (E2) in Lemma 2, which potentially helps to clarify a seemingly contradictory finding.

3.3.4. Long-run risk models cannot fully capture joint dynamics of equities and bonds

Deserving of further comments, we now investigate the ability of long-run risk models to explain

the movement of both bonds and equities. In our context, a statistic to gauge the performance of long-
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run risk models in capturing the comovement of returns of bonds and equities is the lower bound on

Var
[

MP
t+1

MP
t

/
MT

t+1
MT

t

]
.

Table 1 shows that long-run risk models are unable to completely capture the joint movement in bond

and equity markets. The variance of the ratio of the permanent component of the SDF to the transitory

component of the SDF in the Bansal and Yaron (Kelly) model is estimated to be 0.045 (0.094), whereas

the lower bound implied by the data is in excess of 0.138.

3.3.5. Long-run risk models do not satisfy our variance bounds under departures from standard prefer-

ences

How reasonable are the variances of the permanent and transitory components from the Bansal and

Yaron (2004) model under alternative assumptions about the preference parameters, and yet calibrate to

the historical levels of the equity premium and the risk-free return? How do the permanent and transitory

components of the SDF change when the risk aversion and elasticity of intertemporal substitution are

altered? Table 2 presents the evidence, while keeping the parameters of consumption dynamics fixed to the

values in Panel A of Table Appendix-I.

We offer a few observations. First, the results show that when the risk aversion parameter γ is in the

range of 10 and the elasticity of intertemporal substitution ψ ranges between 1.5 and 2.0, only then is the

model able to replicate the equity premium of around 6%. When γ < 7.5, it worsens the model’s ability to

generate a suitable equity premium, which also coincides with low values of the variance of the permanent

component of the SDF.

Further, keeping the subjective discount rate β fixed, increasing the risk aversion and the elasticity

of intertemporal substitution raises the variance of the permanent component of the SDF. Our exercises

also affirm that the model fails to meet the data-based bounds under reasonable combinations of (β,γ,ψ),

suggesting that there may still be room to refine the dynamics of fundamentals.

3.3.6. Enforcing conformity with traded variance data can impose further hurdles on asset pricing models

Long-run risk models suggest restrictions on the variance risk premium, as reflected in the dynamics of

variance swap rates, and we estimate bounds to incorporate information about the variance risk premium

(as derived in Propositions 1, 2, and 3). Complementing our previous exercises, we augment SET 1 with
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monthly gross returns of the variance swap.6

Specifically, we obtain the gross return
∫ t+1

t σ2
s ds

Vt [1t+1]E
Q
t (

∫ t+1
t σ2

s ds) by taking
∫ t+1

t σ2
s ds to be the realized in-

tegrated variance computed from daily S&P 500 index returns, and recognizing that EQt
(∫ t+1

t σ2
s ds

)
is

(VIX
100 )2/12 (see, e.g., Bakshi and Madan (2006), Carr and Wu (2009), and Drechsler and Yaron (2009)).

The data is available over the 1990:01 to 2009:12 sample period.

Var
[

MP
t+1

MP
t

] Var
[

MP
t+1

MP
t

]

Var
[

Mt+1
Mt

]
Var

[
MT

t+1
MT

t

]

Var
[

Mt+1
Mt

] Var




MP
t+1

MP
t

MT
t+1

MT
t




SET 1 Estimate 0.487 0.987 0.002 0.600

SET 1 augmented with variance swap Estimate 0.543 0.989 0.001 0.662

Our results indicate that augmenting SET 1 with the variance swap magnifies the bound on the variance

of the permanent component of SDFs. Indeed, such a data feature can make it difficult for asset pricing

models, including the long-run risk models, to reproduce the variance of the permanent component of

SDFs.

When the variance swap is a part of the set of assets, the majority of the variability in the SDFs still

emanates from the permanent component. The lower bound on Var
[

MP
t+1

MP
t

/
MT

t+1
MT

t

]
remains relatively large

compared to the values under reasonable parameterizations of both the long-run risk models.

In summary, our findings highlight the difficulty of asset pricing models in explaining the permanent

component of SDFs, the transitory component of SDFs, as well as the joint movement in returns across

markets. A particular lesson is that asset pricing models could be enriched to better describe the dynamics

of the permanent and transitory components of SDFs as reflected in bond risk premium, a positive equity

risk premium, and a negative variance risk premium.

4. Conclusions

This paper proposes a framework for developing variance bounds on the permanent and transitory

components of stochastic discount factors, with the aim of assessing asset pricing models. Our treatment

6While our focus is directed towards claims on the market variance, one could extend the analysis to include SDFs (as in
equation (5)) that also consistently price out-of-the-money put options on the market index, besides primary assets. There are two
salient points to appreciate in this context. First, as monthly out-of-the-money index put options often expire worthless, the index
put option returns exhibit relatively high volatility compared to index returns, which can impose stringent hurdles on any asset
pricing model. Second, given the third Friday of the month expiration cycle for index puts, one must resort to a data set that aligns
monthly asset returns with index put option returns.
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contributes by improving on Alvarez and Jermann (2005), whereby we first expand the analysis by char-

acterizing stochastic discount factors, with permanent and transitory components, that are capable of cor-

rectly pricing the risk-free bond, long-term discount bond, equities, and insurance assets. Next, we show

that our variance bounds apply broadly to a setting where some assets have a negative expected rate of

return. Furthermore, our variance bounds exhibit the attribute that they combine the information from both

average returns and the variance-covariance matrix of returns. Lastly, we solve the eigenfunction problem

of Hansen and Scheinkman (2009) for a class of long-run risk models to evaluate their performance based

on our variance bounds.

We develop theoretical results related to the lower bound on the variance of the permanent component

of stochastic discount factors, the lower (upper) bound on the size of the permanent (transitory) component

of stochastic discount factors, and then a lower bound on the variance of the ratio of the permanent to the

transitory component. The lower bound on the variance of the permanent component of stochastic discount

factors and the lower (upper) bound on the size of the permanent (transitory) component of stochastic

discount factors are shown to generalize the Alvarez and Jermann (2005) bounds. Our lower bound on the

variance of the ratio of the permanent to the transitory component of stochastic discount factors can be used

to assess whether a candidate stochastic discount factor is capable of describing the additional dimension of

comovement between bonds, equities, and other assets and has no analog in Alvarez and Jermann (2005).

The information content of our variance bounds is assessed by applying them to examine empirically

the long-run risk models of Bansal and Yaron (2004) and Kelly (2009), where the stochastic discount factor

and the permanent component of the stochastic discount factor is lognormal and outside of the lognormal

class, respectively. The variance bounds framework developed in our paper can suggest directions in which

long-run risk models could be modified to deliver further empirical consistency. In addition, the variance

bounds can be employed to examine other stochastic discount factors featuring permanent and transitory

components.

Our work could be extended. In particular, requiring an asset pricing model to comply with the bound

restrictions imposed by the returns data could offer an alternative way to recover parameters of preferences

together with those governing fundamentals. Achieving identification through the information contained

in the low frequency ingredients of stochastic discount factors could lead to a better understanding of asset

returns.
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Appendix A: Proofs of unconditional bounds

In the results that follow, we provide a proof of Propositions 1, 2, and 3.

Proof of Proposition 1. Let µm ≡ E
(

Mt+1
Mt

1t+1

)
and recall that Rt+1 =

(
Rt+1,1,R

[+]
t+1,R

[−]
t+1

)
is the

vector of gross returns with dimension (1 + n1 + n2). Define the (1 + n1 + n2)-dimensional vector A ≡
[1, ı, ı], where ı is a vector of ones.

The proof is by construction. Start with the expression E
((

MP
t+1

MP
t
−E

(
MP

t+1
MP

t

))(
Rt+1

Rt+1,∞
−E

(
Rt+1

Rt+1,∞

)))
.

Then, noting that E
(

MP
t+1

MP
t

)
= 1 and Rt+1,∞ = MT

t /MT
t+1, we recognize

E
((

MP
t+1

MP
t
−E

(
MP

t+1

MP
t

))(
Rt+1

Rt+1,∞
−E

(
Rt+1

Rt+1,∞

)))
= A − E

(
Rt+1

Rt+1,∞

)
. (A1)

Denote

Ω≡ E

((
Rt+1

Rt+1,∞
−E

(
Rt+1

Rt+1,∞

))′ (
Rt+1

Rt+1,∞
−E

(
Rt+1

Rt+1,∞

)))
and B≡ A−E

(
Rt+1

Rt+1,∞

)
. (A2)

Multiply the right hand side of (A1) by Ω−1B′
to obtain:

BΩ−1B
′

= E
((

MP
t+1

MP
t
−E

(
MP

t+1

MP
t

))(
Rt+1

Rt+1,∞
Ω−1B

′−E
(

Rt+1

Rt+1,∞
Ω−1B

′
)))

, (A3)

= Cov
[

MP
t+1

MP
t
−E

(
MP

t+1

MP
t

)
,

Rt+1

Rt+1,∞
Ω−1B

′−E
(

Rt+1

Rt+1,∞
Ω−1B

′
)]

, (A4)

≤
(

Var
[

MP
t+1

MP
t

])1/2

×
(

Var
[

Rt+1

Rt+1,∞
Ω−1B

′
])1/2

. (A5)

Given that Var
[

Rt+1
Rt+1,∞

Ω−1B′
]

equals BΩ−1B′
, our application of the Cauchy-Schwartz inequality implies

that the lower bound on the permanent component of SDFs is

σ2
pc ≡ BΩ−1B

′ ≤ Var
[

MP
t+1

MP
t

]
. (A6)

Thus, we have proved the bound in equation (8) of Proposition 1. Furthermore,

Var
[

Mt+1

Mt

]
= Var

[
MP

t+1

MP
t

MT
t+1

MT
t

]
= E

((
MP

t+1

MP
t

)2 (
1

Rt+1,∞

)2
)
− µ2

m. (A7)
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Observe that Var
[

Mt+1
Mt

]
+µ2

m = E
((

MP
t+1

MP
t

)2 (
1

Rt+1,∞

)2
)
≤ E

((
MP

t+1
MP

t

)2
)

. Proceeding, Var
[

Mt+1
Mt

]
+µ2

m ≤

E
((

MP
t+1

MP
t

)2
)
−1+1. Therefore,

Var
[

Mt+1

Mt

]
≤ Var

[
MP

t+1

MP
t

]
+ 1 − µ2

m. (A8)

Expression (A8) obtains because E
(
MP

t+1/MP
t
)

= 1. Inequality (A8) can be expressed as

1

Var
[

Mt+1
Mt

] ≥ 1

Var
[

MP
t+1

MP
t

]
+ 1 − µ2

m

, (A9)

and
Var

[
MP

t+1
MP

t

]

Var
[

Mt+1
Mt

] ≥
Var

[
MP

t+1
MP

t

]

Var
[

MP
t+1

MP
t

]
+ 1 − µ2

m

. (A10)

Now the first derivative of the function L [u] = u
u+1−µ2

m
is L ′ [u] = 1−µ2

m

(u+1−µ2
m)2 > 0 because 1 > µ2

m. Since

Var
[

MP
t+1

MP
t

]
≥ σ2

pc, it follows that L
[
Var

[
MP

t+1
MP

t

]]
≥ L

[
σ2

pc
]
. Hence,

Var
[

MP
t+1

MP
t

]

Var
[

Mt+1
Mt

] ≥
Var

[
MP

t+1
MP

t

]

Var
[

MP
t+1

MP
t

]
+ 1 − µ2

m

≥ σ2
pc

σ2
pc + 1 − µ2

m
, (A11)

which completes the proof.

Proof of Proposition 2. For the proof, we first build Lemma 1.

Lemma 1 The lower bound on the variance of SDFs that correctly price the assets according to (5) is

σ2
L ≡




1 − µm E (Rt+1,1)

ı − µm E
(

R[+]
t+1

)

ı − µm E
(

R[−]
t+1

)




′

(Var [Rt+1])
−1




1 − µm E (Rt+1,1)

ı − µm E
(

R[+]
t+1

)

ı − µm E
(

R[−]
t+1

)


 . (A12)

Proof: Keeping the same notation as before, note that

E
(

Mt+1

Mt
− µm

)
(Rt+1 − E (Rt+1)) = A − µm E (Rt+1) . (A13)
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Equation (A13) reduces to

E
(

Mt+1

Mt
− µm

)
(Rt+1 − E (Rt+1)) = V, where defining V≡ A − µm E (Rt+1) . (A14)

Multiply (A14) by Σ−1V′
, where Σ represents the variance-covariance matrix of Rt+1, that is,

Σ ≡ E (Rt+1−E (Rt+1))
′
(Rt+1−E (Rt+1)) . (A15)

Then,

E
(

Mt+1

Mt
−µm

)
(Rt+1−E (Rt+1))Σ−1V

′
= VΣ−1V

′
. (A16)

Applying the Cauchy Schwartz inequality to the left hand side of (A16),

VΣ−1V
′
= E

(
Mt+1

Mt
−µm

)
(Rt+1−E (Rt+1))Σ−1V

′ ≤
(

E
(

Mt+1

Mt
−µm

)2
) 1

2 (
VΣ−1V

′) 1
2
, (A17)

which reduces to

VΣ−1V
′ ≤ E

(
Mt+1

Mt
−µm

)2

= Var
[

Mt+1

Mt

]
. (A18)

This ends the proof of (A12).

For the σ2
L defined in (A12), it follows that,

1
σ2

L
≥ 1

Var
[

Mt+1
Mt

] , and therefore,
Var

[
MT

t+1
MT

t

]

Var
[

Mt+1
Mt

] ≤
Var

[
1

Rt+1,∞

]

σ2
L

. (A19)

Hence, we have established the result.

Proof of Proposition 3: Observe that

E







MP
t+1

MP
t

MT
t+1

MT
t

−E




MP
t+1

MP
t

MT
t+1

MT
t







(
Rt+1

R2
t+1,∞

−E

(
Rt+1

R2
t+1,∞

))
 = A−µmP/mT E

(
Rt+1

R2
t+1,∞

)
, (A20)
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where µmP/mT ≡ E




MP
t+1

MP
t

MT
t+1

MT
t


. We denote

Θ≡ E




(
Rt+1

R2
t+1,∞

−E

(
Rt+1

R2
t+1,∞

))′ (
Rt+1

R2
t+1,∞

−E

(
Rt+1

R2
t+1,∞

))
 and D≡ A−µmP/mT E

(
Rt+1

R2
t+1,∞

)
.

(A21)

Multiplying (A20) by Θ−1D′
and then applying the Cauchy-Schwartz inequality to the left hand side of

(A20), the lower bound on the variance of the relative contribution of the permanent component of SDFs

to the transitory component of SDFs can then be derived as: DΘ−1 D′ ≤Var




MP
t+1

MP
t

MT
t+1

MT
t


 , as asserted.

Appendix B: Proofs of unconditional bounds that incorporate conditioning
information

Proof of Propositions 1 and 2 with conditioning variables: For tractability of exposition, we denote

zt =




z1t

z2t

z3t


 (B1)

the set of conditioning variables. The variable zt predicts the return’s vector Rt+1. We note that

E

((
MP

t+1

MP
t
−E

(
MP

t+1

MP
t

))(
z
′
tRt+1

Rt+1,∞
−E

(
z
′
tRt+1

Rt+1,∞

)))
= E

(
Et

(
Mt+1

Mt
z
′
tRt+1

))
−E

(
z
′
tRt+1

Rt+1,∞

)
,

= E
(

z
′
t ı
)
−E

(
z
′
tRt+1

Rt+1,∞

)
. (B2)

Equation (B2) follows, since the permanent component of the pricing kernel is a martingale. Now, denote

Ω≡ E

(
z
′
tRt+1

Rt+1,∞
−E

(
z
′
tRt+1

Rt+1,∞

))2

and H≡ E
(

z
′
t ı
)
−E

(
z
′
tRt+1

Rt+1,∞

)
. (B3)

Multiplying (B2) by Ω−1H′
and applying the Cauchy-Schwartz inequality to (B2), we obtain the lower
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bound on the permanent component as

HΩ−1H
′ ≤Var

[
MP

t+1

MP
t

]
. (B4)

We then follow the same approach as in the proofs of Propositions 1 and 2 and derive the bound on the

ratio of the variance of the permanent component to the variance of the SDF.

Proof of Proposition 3 with conditioning variables: Using the conditioning variable zt , we observe that

E







MP
t+1

MP
t

MT
t+1

MT
t

−E




MP
t+1

MP
t

MT
t+1

MT
t







(
z
′
tRt+1

R2
t+1,∞

−E

(
z
′
tRt+1

R2
t+1,∞

))
 = E

(
z
′
t ı
)
−µmP/mT E

(
z
′
tRt+1

R2
t+1,∞

)
. (B5)

We denote

Θ≡ E

(
z
′
tRt+1

R2
t+1,∞

−E

(
z
′
tRt+1

R2
t+1,∞

))2

and C≡ E
(

z
′
t ı
)
−µmP/mT E

(
z
′
tRt+1

R2
t+1,∞

)
. (B6)

We multiply (B5) by Θ−1C′
and apply the Cauchy-Schwartz inequality to (B5), thereby deriving the lower

bound on the permanent component:

CΘ−1C
′ ≤Var




MP
t+1

MP
t

MT
t+1

MT
t


 . (B7)

Thus, the result is proved.

Appendix C: Solution to the eigenfunction problem in Bansal and Yaron
(2004)

The stochastic discount factor. Since the expressions are derived using standard techniques, we intend to

be brief. The return on a consumption claim can be approximated as

log(RM,t+1) = κ0 + κ1 zt+1 + gt+1 − zt , (C1)

with:

κ0 = log
(
1+ ez)− ez

(1+ ez)
z and κ1 =

ez

(1+ ez)
, (C2)
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where zt ≡ log(V c
t /Ct) is the log price-consumption ratio. The approximate solution for the log price-

consumption ratio is

zt = A0 + A1 xt + A2 σ2
t , (C3)

with:

A1 =
1
ψ −1

κ1ρ−1
, A2 =

1
2

(
κ2

1A2
1ϕ2

e +
(

1− 1
ψ

)2
)

θ

(1−κ1ν1)
, and, (C4)

A0 =
θ log(β)+θκ0 +θ

(
1− 1

ψ

)
µ+θκ1A2 (1−ν1)σ2 + 1

2

(
θ2κ2

1A2
2σ2

ω
)

θ(1−κ1)
, (C5)

where θ ≡ 1−γ
1− 1

ψ
, the coefficient of relative risk aversion is γ, the elasticity of intertemporal substitution is

ψ, and 0 < β < 1 is the time discount factor.

Now, we show that the SDF is a function of the innovation in the market variance. To proceed, the log

market portfolio return is:

log(RM,t+1) = κ0 +κ1A0 +κ1A1ρxt +κ1A1ϕeσtet+1 +κ1A2
(
σ2 +ν1

(
σ2

t −σ2)+σωωt+1
)
+gt+1− zt .

(C6)

Therefore, the conditional variance of the market portfolio return is:

σ2
M,t =

(
1+κ2

1 A2
1 ϕ2

e
)

σ2
t +κ2

1 A2
2 σ2

ω, (C7)

which implies

σ2
M,t+1−Et

(
σ2

M,t+1
)

=
(
1+κ2

1 A2
1 ϕ2

e
)

σω ωt+1. (C8)

The expected variance risk premium is

Et
(
σ2

M,t+1
)−EQt

(
σ2

M,t+1
)

= −Covt

[
log

(
Mt+1

Mt

)
,σ2

M,t+1

]
(C9)

= λm,ω
(
1+κ2

1A2
1ϕ2

e
)

σ2
ω, with λm,ω ≡ (1−θ)κ1A2. (C10)

The log Epstein and Zin (1991) SDF is

log
(

Mt+1

Mt

)
= θ log(β)+(θ−1)(κ0− zt)+(θ−1)κ1 zt+1 +

(
(θ−1)− θ

ψ

)
gt+1. (C11)
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Under our assumptions, we replace gt+1 and zt+1 in equation (C11) and use (C8) to get

log
(

Mt+1

Mt

)
= ζt + λm,η σt ηt+1 − λm,e σt et+1 − λm,ω σω ωt+1, (C12)

where

ζt = θ log(β)+(θ−1)(κ0− zt)+(θ−1)κ1 A0 +(θ−1)κ1 A1 ρxt

+
(

(θ−1)− θ
ψ

)
(µ+ xt)+(θ−1)κ1 A2

(
σ2 +ν1

(
σ2

t −σ2)) , (C13)

and

λm,η ≡ (θ−1)− θ
ψ

, λm,e ≡ (1−θ)κ1 A1ϕe, λm,ω ≡ (1−θ)κ1 A2. (C14)

We then replace (C8) in (C12):

log
(

Mt+1

Mt

)
= ζt +D1 (gt+1−Et (gt+1))+D2 (xt+1−Et (xt+1))+D3

(
σ2

M,t+1−Et
(
σ2

M,t+1
))

, (C15)

where D1, D2, and D3 are

D1 ≡ λm,η, D2 ≡ −λm,e/ϕe, D3 ≡ − λm,ω(
1+κ2

1 A2
1 ϕ2

e
) , (C16)

and this was the final step.

The permanent and transitory components of the SDF. To derive the permanent and transitory compo-

nent of SDF, we solve the eigenfunction problem

Et

(
Mt+1

Mt
e [Xt+1]

)
= δe [Xt ] , (C17)

where the set of state variables is Xt =


 xt

σ2
t −σ2


. Using the time-series assumptions, it can be shown:

Xt+1 = ϕXt + ϕeω ξt+1, (C18)
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where

ϕ =


 ρ 0

0 ν1


 , ϕeω =


 ϕeσt 0

0 σω


 , and ξt+1 =


 et+1

ωt+1


 . (C19)

We conjecture that the solution is of the form

e [Xt+1] = exp
(

c
′
Xt+1

)
, (C20)

with c
′
= (c1,c2). Proceeding, we denote

Ψt = Et

(
Mt+1

Mt
e [Xt+1]

)
= Et

(
exp

(
log

(
Mt+1

Mt

)
+ log(e [Xt+1])

))
(C21)

and recall that the log SDF is

log
(

Mt+1

Mt

)
= ζt +λm,ησtηt+1 +ϒ

′
ξt+1 with ϒ

′
= (−λm,eσt ,−λm,ωσω) . (C22)

We use (C15) and rewrite (C21) as

Ψt = exp
(

ζt + c
′
ϕXt

)
Et

(
exp

(
λm,ησtηt+1 +

(
ϒ
′
+ c

′
ϕeω

)
ξt+1

))
. (C23)

Now,

Et

(
exp

(
λm,ησtηt+1 +

(
ϒ
′
+ c

′
ϕeω

)
ξt+1

))
= exp

(
1
2

(
λ2

m,ησ2
t +

(
ϒ
′
ϒ+2c

′
ϕeωϒ+ c

′
ϕeωϕ

′
eωc

)))
,

(C24)

and we can, therefore, rewrite (C23) as

Ψt = exp
(

ζt + c
′
ϕXt +

1
2

λ2
m,ησ2

t +
1
2

ϒ
′
ϒ+ c

′
ϕeωϒ+

1
2

c
′
ϕeωϕ

′
eωc

)
, (C25)

where

c
′
ϕeωϒ =−c1λm,eϕeσ2

t − c2λm,ωσ2
ω, ϒ

′
ϒ = λ2

m,eσ2
t +λ2

m,ωσ2
ω, (C26)

c
′
ϕeωϕ

′
eωc = ϕ2

eσ2
t c2

1 +σ2
ωc2

2, c
′
ϕXt = c1ρxt +ν1c2

(
σ2

t −σ2) . (C27)
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We recall that

ζt = θ log(β)+(θ−1)(κ0−A0)− (θ−1)A2σ2 +(θ−1)κ1A0 +λm,ηµ−λm,ωσ2 (C28)

−((θ−1)A2 +λm,ων1)
(
σ2

t −σ2)−
(

λm,e

ϕe
ρ+(θ−1)A1−λm,η

)
xt ,

and express (C25) as

Ψt = δexp
(

c
′
Xt

)
, (C29)

with

δ = exp




θ log(β)+(θ−1)(κ0−A0)− (θ−1)A2σ2 +(θ−1)κ1A0

+λm,ηµ−λm,ωσ2 + 1
2 λ2

m,ησ2 + 1
2

(
λ2

m,ωσ2
ω
)
+ 1

2 λ2
m,eσ2− c2λm,ωσ2

ω

−c1λm,eϕeσ2 + 1
2 σ2

ωc2
2 + 1

2 ϕ2
ec2

1σ2


 ,

and

c
′
Xt = c1ρxt +ν1c2

(
σ2

t −σ2)+
1
2

λ2
m,η

(
σ2

t −σ2)+
1
2

λ2
m,e

(
σ2

t −σ2) (C30)

− c1λm,eϕe
(
σ2

t −σ2)+
1
2

ϕ2
ec2

1
(
σ2

t −σ2)−
(

λm,e

ϕe
ρ+(θ−1)A1−λm,η

)
xt . (C31)

We use equation (C30) to recover c
′
= (c1,c2) as

c1 =
λm,η +(θ−1)A1 (κ1ρ−1)

1−ρ
, c2 =

1
2 λ2

m,η + 1
2 λ2

m,e− c1λm,eϕe + 1
2 ϕ2

ec2
1

1−ν1
, (C32)

and

δ = exp


 θ log(β)+(θ−1)(κ0−A0)− (θ−1)A2σ2 +(θ−1)κ1A0

+λm,η µ−λm,ω σ2 + c2 (1−ν1)σ2 + 1
2

(
λ2

m,ω σ2
ω
)− c2λm,ω σ2

ω + 1
2 σ2

ω c2
2


 . (C33)

The transitory component of the SDF is given by

MT
t+1

MT
t

= δexp
(
−c

′
(Xt+1−Xt)

)
, and, hence,

MP
t+1

MP
t

=
(

Mt+1

Mt

)
/

(
MT

t+1

MT
t

)
, (C34)

yielding (35) of Proposition 4.
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Appendix D: Solution to the eigenfunction problem in Kelly (2009)

The stochastic discount factor. The dynamics of the real economy are

gt+1 = µ+ xt +σg σt zg,t+1 +
√

Λt Wg,t+1, xt+1 = ρx xt +σx σt zx,t+1, (D1)

σ2
t+1 = σ2 (1−ρσ)+ρσ σ2

t +σσ zσ,t+1, Λt+1 = Λ(1−ρΛ)+ρΛΛt +σΛ zΛ,t+1. (D2)

The z shocks are standard normal and independent. In addition to their gaussian shocks, consumption

depends on non-gaussian shocks Wg. The Wg shocks are distributed Laplace with mean zero and variance

two, and independent. Wg shock is independent of z shocks. In this model, the SDF is of the form

log
(

Mt+1

Mt

)
= θ log(β) − θ

ψ
gt+1 + (θ−1)rM,t+1, (D3)

= ξt −λg

(
σgσtzg,t+1 +

√
ΛtWg,t+1

)
−λxσxσtzx,t+1−λσσσzσ,t+1−λΛσΛzΛ,t+1,

with

λg = 1−θ+
θ
ψ

, λx = (1−θ)κ1Ax, λσ = (1−θ)κ1Aσ, λΛ = (1−θ)κ1AΛ, and, (D4)

Ax =
1− 1

ψ

1−κ1ρx
, AΛ =

θ
(

1− 1
ψ

)(
1− 1

ψ

)

1−κ1ρx
, Aσ =

θ
2




(
1− 1

ψ

)2
σ2

g +κ2
1A2

xσ2
x

1−κ1ρσ


 , (D5)

A0 =
log(β)+

(
1− 1

ψ

)
µ+κ0 +κ1

(
Aσσ2 (1−ρσ)+AΛΛ(1−ρΛ)

)
+ 1

2 θκ2
1
(
A2

σσ2
σ +A2

Λσ2
Λ
)

1−κ1
, (D6)

and,

ξt = θ log(β)− θ
ψ

(µ+ xt)+(θ−1)Et (rM,t+1) . (D7)

The market return is

rM,t+1 = κ0 + κ1 wgt+1 − wgt +gt+1, (D8)

with

wgt+1 = A0 + Ax xt+1 + Aσ σ2
t+1 + AΛ Λt+1. (D9)
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Therefore,

rMt+1−Et(rMt+1) = κ1AΛσΛzΛ,t+1 +σgσtzg,t+1 +
√

ΛtWg,t+1 +κ1Axσxσtzx,t+1 +κ1Aσσσzσ,t+1, (D10)

with

Et(rMt+1) = κ0 + κ1
(
A0 +AxEtxt+1 + AσEt(σ2

t+1) + AΛEt(Λt+1)
) − wgt +Et(gt+1), (D11)

where

Et(xt+1) = ρx xt , Et(σ2
t+1) = σ2 (1 − ρσ) + ρσ σ2

t , (D12)

Et(Λt+1) = Λ(1 − ρΛ) + ρΛ Λt , Et(gt+1) = µ + xt . (D13)

The next step is to show that the SDF depends on the market variance. In this regard,

Vart (rMt+1) = κ2
1
(
A2

Λσ2
Λ + A2

σσ2
σ
)

+
(
σ2

g + κ2
1 A2

x σ2
x
)

σ2
t + Vart (Wg,t+1)Λt . (D14)

Now the moment generating function of the Laplace variable Wg is

Et (exp(sWg,t+1)) =
1

1− s2 . (D15)

Therefore, Vart (Wg,t+1) = 2 , and the conditional variance of the market return is

σ2
Mt+1 = κ2

1
(
A2

Λσ2
Λ + A2

σσ2
σ
)

+
(
σ2

g + κ2
1 A2

x σ2
x
)

σ2
t+1 + 2Λt+1, (D16)

and the innovation in the market variance is

σ2
Mt+1−Et

(
σ2

Mt+1
)

=
(
σ2

g +κ2
1A2

xσ2
x
)

σσzσ,t+1 + 2σΛ zΛ,t+1. (D17)

The expected variance risk premium is

Et
(
σ2

Mt+1
)−EQt

(
σ2

Mt+1
)

= −Covt

[
log

(
Mt+1

Mt

)
,σ2

Mt+1−Et
(
σ2

Mt+1
)]

, (D18)

= λσ
(
σ2

g +κ2
1A2

xσ2
x
)

σ2
σ +2λΛσ2

Λ. (D19)
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We replace the conditional market variance in the SDF and get

log
(

Mt+1

Mt

)
= ξt + D1 (gt+1−Et (gt+1)) + D2 (xt+1−Et (xt+1))

+D3
(
σ2

Mt+1−Et
(
σ2

Mt+1
))

+ D4 (Λt+1−Et (Λt+1)) ,

with

D1 =−λg, D2 =−λx, D3 =− λσ(
σ2

g +κ2
1A2

xσ2
x
) , D4 =

2λσ(
σ2

g +κ2
1A2

xσ2
x
) −λΛ. (D20)

The permanent and transitory component of the SDF. We consider the set of state variables

Zt =




xt

σ2
t −σ2

Λt −Λ


 . (D21)

The goal is to solve the eigenfunction problem Et

(
Mt+1
Mt

e [Zt+1]
)

= δe [Zt ]. Using our time series assump-

tions,

Zt+1 = ΓZt + Σηt+1, (D22)

with

Γ =




ρx 0 0

0 ρσ 0

0 0 ρΛ


 , Σ =




σxσt 0 0

0 σσ 0

0 0 σΛ


 , ηt+1 =




zx,t+1

zσ,t+1

zΛ,t+1


 . (D23)

We conjecture that the solution is of the form

e [Zt+1] = exp
(

c
′
Zt+1

)
, (D24)

with c = (c1,c2,c3). Now,

Ψ = Et

(
Mt+1

Mt
e [Zt+1]

)
= Et

(
exp

(
log

(
Mt+1

Mt

)
+ log(e [Zt+1])

))

= Et

(
exp

(
ξt + c

′
ΓZt −λgσgσtzg,t+1−

(
ϕ
′− c

′
Σ
)

ηt+1

)
exp

(
λg

√
ΛtWg,t+1

))
. (D25)
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Since Wg,t+1 is independent of the z variables, it follows that

Ψ = exp
(

ξt + c
′
ΓZt

)
ϒ1ϒ2, (D26)

with ϕ′
= (λxσxσt ,λσσσ,λΛσΛ), and

ϒ1 = Et

(
exp

(
−λgσgσtzg,t+1−

(
ϕ
′− c

′
Σ
)

ηt+1

))
, ϒ2 = Et

(
exp

(
−λg

√
ΛtWg,t+1

))
. (D27)

We notice that

ϒ1 = exp
(

1
2

(
λ2

gσ2
gσ2

t
)
+

1
2

(
ϕ
′− c

′
Σ
)

(ϕ−Σc)
)

, ϒ2 = Et

(
exp

(
−λg

√
ΛtWg,t+1

))
=

1
1−λ2

gΛt

(D28)

and, hence, rewrite (D26) as

Ψ = exp
(

ξt + c
′
ΓZt

)
exp

(
1
2

(
λ2

gσ2
gσ2

t
)
+

1
2

(
ϕ
′− c

′
Σ
)

(ϕ−Σc)
)

exp

(
log

(
1

1−λ2
gΛt

))
. (D29)

Following Kelly (2009), we use the Taylor expansion of 1
1−λ2

gΛt
to get 1

1−λ2
gΛt

≈ λ2
gΛt . Therefore, (D29)

simplifies to

Ψ = exp
(

ξt + c
′
ΓZt

)
exp

(
1
2

(
λ2

gσ2
gσ2

t
)
+

1
2

(
ϕ
′− c

′
Σ
)

(ϕ−Σc)
)

exp
(
λ2

gΛt
)
,

= exp
(

ξt + c
′
ΓZt +λ2

gΛt +
1
2

λ2
gσ2

gσ2
t +

1
2

(
ϕ
′− c

′
Σ
)

(ϕ−Σc)
)

,

= exp
(

ξt + c
′
ΓZt +λ2

gΛt +
1
2

λ2
gσ2

gσ2
t +

1
2

ϕ
′
ϕ−ϕ

′
Σc+

1
2

c
′
ΣΣc

)
. (D30)

This implies that

c
′
ΓZt = c1ρxxt + c2ρσ

(
σ2

t −σ2)+ c3ρΛ
(
Λt −Λ

)
, ϕ

′
ϕ = λ2

xσ2
xσ2

t +λ2
σσ2

σ +λ2
Λσ2

Λ,

ϕ
′
Σc = λxσ2

xσ2
t c1 +λσσ2

σc2 +λΛσ2
Λc3, c

′
ΣΣc = c2

1σ2
xσ2

t + c2
2σ2

σ + c2
3σ2

Λ,
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and we rewrite (D30) as

Ψ = exp


 ξt + c

′ΓZt +λ2
gΛt + 1

2 λ2
gσ2

gσ2
t + 1

2

(
λ2

xσ2
xσ2

t +λ2
σσ2

σ +λ2
Λσ2

Λ
)

−(
λxσ2

xσ2
t c1 +λσσ2

σc2 +λΛσ2
Λc3

)
+ 1

2

(
c2

1σ2
xσ2

t + c2
2σ2

σ + c2
3σ2

Λ
)


 , (D31)

where

ξt = θ log(β)+(θ−1)κ0 +(θ−1)κ1A0− θ
ψ

µ+(θ−1)κ1Aσσ2 (1−ρσ)

+(θ−1)µ+(θ−1)κ1AΛΛ(1−ρΛ)− (θ−1)
(
A0 +Aσσ2 +AΛΛ

)

+(θ−1)AΛκ1ρΛΛ+(θ−1)Aσκ1ρσσ2
(
− θ

ψ
+(θ−1)κ1Axρx +(θ−1)− (θ−1)Ax

)
xt

+(θ−1)Aσ (κ1ρσ−1)
(
σ2

t −σ2)+(θ−1)AΛ (κ1ρΛ−1)
(
Λt −Λ

)
. (D32)

We can, therefore, express (D31) as Ψ = δexp
(

c
′Zt

)
, with

δ = exp




θ log(β)+(θ−1)κ0 +(θ−1)κ1A0− θ
ψ µ+(θ−1)κ1Aσσ2 (1−ρσ)

+(θ−1)µ+(θ−1)κ1AΛΛ(1−ρΛ)− (θ−1)
(
A0 +Aσσ2 +AΛΛ

)

+(θ−1)AΛκ1ρΛΛ+(θ−1)Aσκ1ρσσ2

+1
2

(
λ2

σσ2
σ +λ2

Λσ2
Λ
)− (

λσσ2
σc2 +λΛσ2

Λc3
)
+ 1

2

(
c2

2σ2
σ + c2

3σ2
Λ
)
+λ2

gΛ

+
(−λxσ2

xc1 + 1
2 c2

1σ2
x + 1

2 λ2
gσ2

g + 1
2 λ2

xσ2
x
)

σ2




(D33)

c =




c1ρx +(−λg +(θ−1)Ax (κ1ρx−1))

c2ρσ−λxσ2
xc1 + 1

2 c2
1σ2

x + 1
2 λ2

gσ2
g + 1

2 λ2
xσ2

x +(θ−1)Aσ (κ1ρσ−1)

c3ρΛ +λ2
g +(θ−1)AΛ (κ1ρΛ−1)


 . (D34)

Solving (D34) for the individual components in c = (c1,c2,c3) allows us to deduce that

c1 =
−λg +(θ−1)Ax (κ1ρx−1)

1−ρx
, (D35)

c2 =
−λxσ2

xc1 + 1
2 c2

1σ2
x + 1

2 λ2
gσ2

g + 1
2 λ2

xσ2
x +(θ−1)Aσ (κ1ρσ−1)

1−ρσ
, (D36)

c3 =
λ2

g +(θ−1)AΛ (κ1ρΛ−1)
1−ρΛ

. (D37)
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The transitory component of the SDF is

MT
t+1

MT
t

= δexp
(
−c

′
(Zt+1−Zt)

)
, (D38)

and the permanent component is determined accordingly.

Appendix E: Restrictions implied by an asset pricing model that explains
the equity premium and yet fails to satisfy the lower bound on the variance

of the permanent component of the SDF

The essence of the result is captured in the following Lemma. The converse result on the restriction implied

by an asset pricing model that satisfies the lower bound on the variance of the permanent component of

SDFs and fails to explain the equity premium puzzle is available from the authors.

Lemma 2 Suppose the SDF implied from an asset pricing model can be decomposed into a permanent

component and a transitory component. Let µR∞ ≡ E
(

1
R2

t+1,∞

)
and, as before, µm ≡ E

(
Mt+1
Mt

)
, and suppose

that the asset pricing model satisfies two restrictions:

(a) Var
[

Mt+1

Mt

]
≥ σ2

HJ, where σ2
HJ is defined in Hansen and Jagannathan (1991, Eq. (12)), and (E1)

(b) Cov

[(
Mp

t+1

Mp
t

)2

,

(
MT

t+1

MT
t

)2]
≤ ∆c ≡ µ2

m

(
1+

σ2
HJ

µ2
m

)
− µR∞

(
1+σ2

pc
)
. (E2)

If (a) and (b) hold, then Var
[

MP
t+1

MP
t

]
≥ σ2

pc, where σ2
pc is defined in (8) of Proposition 1. Alternatively, if (a)

and Var
[

MP
t+1

MP
t

]
≤ σ2

pc hold, then Cov
[(

Mp
t+1

Mp
t

)2
,
(

MT
t+1

MT
t

)2
]
≥ ∆c.

Proof: If an asset pricing model satisfies the Hansen and Jagannathan (1991) variance bound (i.e., restric-

tion (a)), it amounts to a resolution of the equity premium puzzle. Proceeding,

Var
[

Mt+1

Mt

]
= E

((
Mp

t+1

Mp
t

)2 (
MT

t+1

MT
t

)2)
− µ2

m, (E3)

= Cov

[(
Mp

t+1

Mp
t

)2

,

(
MT

t+1

MT
t

)2]
+

(
E

(
MT

t+1

MT
t

)2)(
1+Var

[
Mp

t+1

Mp
t

])
− µ2

m. (E4)

Consider the SDF M∗
t+1

M∗
t

that displays the minimum variance property, namely, Var
[

M∗
t+1

M∗
t

]
= σ2

HJ (Hansen

and Jagannathan (1991)). Consider also the permanent component of the SDF M∗P
t+1

M∗P
t

that displays the min-
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imum variance property, namely, Var
[

M∗P
t+1

M∗P
t

]
= σ2

pc (see equation (28)). The SDF with the minimum vari-

ance property admits a unique decomposition (e.g., Roman (2007, Theorem 9.15, page 220))

M∗
t+1

M∗
t

= proj

[
M∗

t+1

M∗
t

∣∣∣∣∣
M∗P

t+1

M∗P
t

]
+ εt+1, with E

(
εt+1

M∗P
t+1

M∗P
t

)
= 0, (E5)

where proj

[
M∗

t+1
M∗

t

∣∣∣∣∣
M∗P

t+1
M∗P

t

]
represents the projection of M∗

t+1
M∗

t
onto M∗P

t+1
M∗P

t
, i.e., proj

[
M∗

t+1
M∗

t

∣∣∣∣∣
M∗P

t+1
M∗P

t

]
=

E
(

M∗t+1
M∗t

M∗P
t+1

M∗P
t

)

E
(

M∗P
t+1

M∗P
t

)2
M∗P

t+1
M∗P

t
.

For future use, define

b ≡
E

(
M∗

t+1
M∗

t

M∗P
t+1

M∗P
t

)

E
(

M∗P
t+1

M∗P
t

)2 , hence,
M∗

t+1

M∗
t

= b
(

M∗P
t+1

M∗P
t

)
+ εt+1. (E6)

Therefore,

E

((
M∗

t+1

M∗
t

)2
)

= b
2

E

((
M∗P

t+1

M∗P
t

)2)
+ E(ε2

t+1). (E7)

Rearranging,

σ2
HJ = b

2 (
σ2

pc +1
)

+ E(ε2
t+1) − µ2

m. (E8)

Impose the condition that the asset pricing model explains the equity premium puzzle. Then,

Var
[

Mt+1

Mt

]
≥ σ2

HJ = b
2 (

σ2
pc +1

)
+ E(ε2

t+1) − µ2
m︸ ︷︷ ︸

from equation (E8)

. (E9)

Combining (E4) and (E9), we arrive at

Cov

[(
Mp

t+1

Mp
t

)2

,

(
MT

t+1

MT
t

)2]
+

(
E

(
MT

t+1

MT
t

)2)(
1+Var

[
Mp

t+1

Mp
t

])
−µ2

m ≥ b
2 (

σ2
pc +1

)
+E

(
ε2

t+1
)−µ2

m.

(E10)

Rearranging and using equation (E8),

Var
[

Mp
t+1

Mp
t

]
≥ ∆d + σ2

pc, (E11)
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where recognizing that
(

MT
t+1

MT
t

)2
= R−2

t+1,∞ and letting

∆d ≡
(
E

(
1/R2

t+1,∞
))−1 (

µ2
m +σ2

HJ
)−(

1+σ2
pc

)−(
E

(
1/R2

t+1,∞
))−1

Cov

[(
Mp

t+1

Mp
t

)2

,

(
MT

t+1

MT
t

)2]
. (E12)

Based on (E11), we may deduce the following:

• If Var
[

Mp
t+1

Mp
t

]
≤ σ2

pc, then ∆d ≤ 0;

• Alternatively, if ∆d ≥ 0, then Var
[

Mp
t+1

Mp
t

]
≥ σ2

pc.

To derive the condition under which ∆d ≥ 0, observe that

∆d ≥ 0 ⇔ ∆c ≥ Cov

[(
Mp

t+1

Mp
t

)2

,

(
MT

t+1

MT
t

)2]
, (E13)

where ∆c is as defined in (E2), delivering the statement of the Lemma. ∆c is computable from the returns

data.
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Table 1
Variance of the permanent and transitory component of the SDFs from long-run risk models

Parameters in Table Appendix-I are employed to compute the variance measure for the permanent com-
ponent, transitory component, and the ratio of the permanent to the transitory component for the asset
pricing models of Bansal and Yaron (2004) (based on equation (35)) and Kelly (2009) (based on equation
(42)). Reported values are averaged over 10,000 replications. Each replication is obtained by simulating
the models based on the shocks in (34) and (41), respectively, while keeping fixed the assumed parame-
ters in Table Appendix-I. SET 1 contains the risk-free bond, the long-term bond, the market, and the 25
Fama-French equity portfolios sorted by size and book-to-market. SET 2 contains the risk-free bond, the
long-term bond, the market, and the 25 Fama-French equity portfolios sorted by size and momentum. The
monthly data used in the construction of the bounds is from 1931:07 to 2009:12 (942 observations). The
data on the risk-free bond and equity are from the data library of Kenneth French. The data on long-term
bonds is from Morningstar. Reported are the estimates from the data, along with the 90% confidence in-
tervals in square brackets. To obtain the confidence intervals, we create 10,000 random samples of size
942 from the data, where the sampling in the block bootstrap is based on 15 blocks. The reported bound
on Var

[
MP

t+1
MP

t
/

MT
t+1

MT
t

]
corresponds to µmP/mT = 0.995 (the mean of the ratio of the permanent component of

the SDF to the transitory component of the SDF), close to that obtained with both asset pricing models.
The p-values, shown in curly brackets, represent the number of times the model-based variance measure
exceeds the corresponding bound from the data, as in SET 1.

Panel A: Asset pricing models Panel B: Bounds from returns data

Bansal and Yaron Kelly SET 1 SET 2

Var
[

MP
t+1

MP
t

]
0.034 0.084 0.105 0.124

(monthly) {0.000} {0.038} [0.029,0.108] [0.034,0.132]

Var
[

MP
t+1

MP
t

]
/Var

[
Mt+1
Mt

]
1.260 1.095 0.972 0.976

{0.000} {0.000} [0.961,0.973] [0.966,0.978]

Var
[

MT
t+1

MT
t

]
/Var

[
Mt+1
Mt

]
0.071 0.015 0.006 0.005

{0.000} {0.000} [0.005,0.008] [0.004,0.007]

Var
[

MP
t+1

MP
t

/
MT

t+1
MT

t

]
0.045 0.094 0.138 0.150

(monthly, µmP/mT = 0.995) {0.000} {0.000} [0.052,0.145] [0.052,0.162]

Equity premium 5.534 6.046
(annualized, %) [4.641,6.428] [5.766, 6.327]

Risk-free return 2.578 3.111
(annualized, %) [1.497,3.660] [2.082,4.141]
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Table 2
Bounds, equity premium, and risk-free return implied by the Bansal and Yaron (2004) model under
alternative parameterizations of preferences

We fix the consumption growth process parameters as implied by the nondurable consumption data (see
Table Appendix-I), but vary (i) the subjective discount factor β, (ii) the risk aversion γ, and (iii) the elasticity
of intertemporal substitution ψ. In addition to reporting the variance bounds on the permanent and the
transitory component of the SDF for the Bansal and Yaron (2004) model, we also report the mean (in %,
annualized) and the standard deviation (in %, annualized) of the model implied equity risk premium and
the risk-free return. Reported values are averaged over 10,000 replications. Each replication is obtained by
simulating the model based on the shocks in (34), while keeping fixed the consumption growth parameters.

β γ ψ Var
[

MP
t+1

MP
t

] Var
[

MP
t+1

MP
t

]

Var
[

Mt+1
Mt

]
Var

[
MT

t+1
MT

t

]

Var
[

Mt+1
Mt

] Var




MP
t+1

MP
t

MT
t+1

MT
t


 µmP/mT Model Properties (%)

Equity Risk-free
Premium Return

Mean Std. Mean Std.
L/L/L 0.997 5 0.5 0.008 2.216 0.341 0.015 1.007 0.163 14.46 7.109 1.05
L/L/M 0.997 5 1.5 0.008 1.319 0.041 0.010 1.004 1.481 19.05 4.333 0.35
L/L/H 0.997 5 2.0 0.008 1.241 0.030 0.009 1.003 1.679 19.72 3.943 0.26
L/M/L 0.997 7.5 0.5 0.018 1.769 0.163 0.030 1.008 1.197 14.48 7.190 1.04
L/M/M 0.997 7.5 1.5 0.018 1.264 0.049 0.023 1.002 3.450 19.13 4.053 0.35
L/M/H 0.997 7.5 2.0 0.018 1.217 0.043 0.022 1.002 3.759 19.81 3.636 0.27
L/H/L 0.997 10 0.5 0.034 1.654 0.140 0.055 1.012 2.293 14.55 7.290 1.04
L/H/M 0.997 10 1.5 0.034 1.263 0.072 0.045 0.993 5.529 19.29 3.791 0.35
L/H/H 0.997 10 2.0 0.034 1.236 0.067 0.045 0.996 5.967 19.98 3.313 0.27

M/L/L 0.998 5 0.5 0.008 2.212 0.341 0.015 1.006 0.163 14.46 5.911 1.05
M/L/M 0.998 5 1.5 0.008 1.316 0.041 0.010 1.003 1.482 19.05 3.126 0.35
M/L/H 0.998 5 2.0 0.008 1.239 0.030 0.009 1.002 1.681 19.72 2.739 0.26
M/M/L 0.998 7.5 0.5 0.018 1.766 0.163 0.030 1.007 1.198 14.48 6.010 1.05
M/M/M 0.998 7.5 1.5 0.018 1.262 0.049 0.023 1.001 3.445 19.13 2.854 0.35
M/M/H 0.998 7.5 2.0 0.018 1.214 0.043 0.022 1.001 3.760 19.81 2.433 0.27
M/H/L 0.998 10 0.5 0.034 1.650 0.140 0.055 1.011 2.297 14.55 6.103 1.05
M/H/M 0.998 10 1.5 0.034 1.260 0.071 0.045 0.992 5.534 19.29 2.579 0.35
M/H/H 0.998 10 2.0 0.034 1.234 0.067 0.044 0.995 5.957 19.98 2.108 0.27

H/L/L 0.999 5 0.5 0.008 2.207 0.341 0.015 1.005 0.163 14.46 4.739 1.04
H/L/M 0.999 5 1.5 0.008 1.313 0.041 0.010 1.002 1.481 19.05 1.915 0.35
H/L/H 0.999 5 2.0 0.008 1.236 0.030 0.009 1.001 1.678 19.72 1.543 0.26
H/M/L 0.999 7.5 0.5 0.018 1.763 0.163 0.030 1.006 1.198 14.48 4.824 1.05
H/M/M 0.999 7.5 1.5 0.018 1.259 0.049 0.023 1.000 3.446 19.13 1.659 0.35
H/M/H 0.999 7.5 2.0 0.018 1.212 0.043 0.022 1.000 3.762 19.81 1.231 0.27
H/H/L 0.999 10 0.5 0.034 1.648 0.141 0.055 1.010 2.296 14.55 4.890 1.04
H/H/M 0.999 10 1.5 0.034 1.258 0.072 0.045 0.991 5.524 19.29 1.385 0.35
H/H/H 0.999 10 2.0 0.034 1.231 0.067 0.044 0.994 5.965 19.98 0.896 0.27
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Table Appendix-I
Parameterizations of asset pricing models in the long-run risk class

The long-run risk model of Bansal and Yaron (2004) is based on

gt+1 = µ+ xt + σt ηt+1, xt+1 = ρxt + ϕe σt et+1,

σ2
t+1 = σ2 + ν1

(
σ2

t −σ2) + σω ωt+1, ωt+1, et+1, ηt+1 ∼ i.i.d N (0,1) ,

and the long-run risk model of Kelly (2009) is based on

gt+1 = µ + xt + σg σt zg,t+1 +
√

ΛtWg,t+1, xt+1 = ρx xt + σx σt zx,t+1,

σ2
t+1 = σ2 (1−ρσ) + ρσσ2

t + σσ zσ,t+1, Λt+1 = Λ(1−ρΛ) + ρΛ Λt + σΛ zΛ,t+1,

zg,t+1, zx,t+1, zσ,t+1, zΛ,t+1 ∼ i.i.d N (0,1) , Wg,t+1 ∼ Laplace(0,1).

Parameters chosen for the Epstein and Zin (1991) utility function, the mean consumption growth (µ),
the predictable consumption component (ρ and ϕe), and the conditional volatility of the log consumption
growth (σ, ν1, σω) are in line with the studies of Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2009),
Beeler and Campbell (2009), Constantinides and Ghosh (2008), Koijen, Lustig, Van Nieuwerburgh, and
Verdelhan (2010), and Yang (2010). β is the time preference parameter, γ is the risk aversion parameter, and
ψ is the parameter of the elasticity of intertemporal substitution. Parameters of the conditional volatility of
the tails are chosen to plausibly mimic the process that governs the conditional volatility of the consumption
growth in Bansal and Yaron (2004). The consumption growth parameters correspond to U.S. nondurable
consumption data.

Panel A: Bansal and Yaron (2004)
Consumption growth

µ ρ ϕe σ ν1 σω
0.0015 0.979 0.044 0.0078 0.987 0.23×10−5

Preferences
β γ ψ

0.998 10 1.5

Panel B: Kelly (2009)
Consumption growth

µ σg ρx σx σ ρσ σσ
0.0015 0.090 0.720 0.090 0.0078 0.978 0.001

Preferences
β γ ψ

0.980 10 1.5

Tail risk
Λ ρΛ σΛ

(0.015)2 0.978 0.17×10−5
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Fig. 1. Permanent and transitory components from the asset pricing model in Example 2

Plotted are the unconditional L-measure (solid black curve) and the variance measure (solid dashed curve)
corresponding to the permanent and the transitory component of SDF, when the pricing kernel process
is log(Mt+1) = log(β) + ς log(Mt) + εt+1, with εt+1 ∼ N

(
0,σ2

ε
)
. The L

[
MP

t+1
MP

t

]
and L

[
MT

t+1
MT

t

]
, for the

permanent and the transitory component, are displayed in equation (23), while Var
[

MP
t+1

MP
t

]
and Var

[
MT

t+1
MT

t

]

are displayed in equations (25)–(26). We keep β = 0.998, M0 = 1, t=1200 months, while the bond maturity,
k, is expressed in years.
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