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Abstract

Simple speci�cations of the neoclassical investment model are resound-
ingly rejected by the data. While this may indicate the presence of other
frictions, this hypothesis cannot be tested without an empirically-supported
speci�cation of the neoclassical benchmark. In this paper, we model a �rm
facing decreasing returns to scale (or imperfect competition), productivity
shocks, and convex capital adjustment costs. We estimate the model from
�rm-level Compustat data using the simulated method of moments and
demonstrate that this simple framework can replicate many well-known em-
pirical characteristics, including cash �ow sensitivity of investment. Mor-
ever, when we allow for regime-switching in the productivity shocks, the
model broadly matches the �rst three moments and persistence of �rm-level
investment, cash �ow, and Tobin�s Q, providing a neoclassical benchmark
against which frictions might be discerned.
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1. Introduction

In Hayashi�s (1982) neoclassical investment model, �rms are perfectly competitive,

have constant-returns-to-scale production functions, and face convex investment

adjustment costs, linearly homogeneous in investment and capital. Investment is a

function of the shadow value of capital (Tobin�s marginal Q) which is empirically

di¢ cult to measure. But under Hayashi�s conditions, marginal Q happens to

coincide with average Q, the ratio of the value of the �rm to its capital stock,

which can be measured empirically. A �rm�s optimal investment-capital ratio

can be expressed solely as a function of average Q. When adjustment costs are

quadratic this function is linear.

The implication that the investment-capital ratio depends only on average Q

has been resoundedly rejected by the data. These rejections are often interpreted

as suggesting that frictions ignored by Hayashi (1982) are important determinants

of investment. Fazzari, Hubbard, and Petersen (1988) (henceforth FHP) pioneered

the use of linear investment equations to test for frictions, focusing on �nancial

constraints. Using �rm-level data, they regress investment on various proxies

for fundamentals, including average Q and sales, and then add cash �ow to the

regression. They �nd large cash-�ow e¤ects for small, non-dividend paying �rms

that they interpret as evidence of �nancial constraints.

In this paper we propose an alternative interpretation for the �ndings of FHP

and the related empirical literature. Our interpretation is that Hayashi�s (1982)

frictionless benchmark is misspeci�ed because the strong assumptions necessary

to make marginal and average Q coincide do not hold in the data. One of FHP�s

results suggests this interpretation: they �nd a signi�cant cash �ow e¤ect on

investment for large �rms.

To study the empirical plausibility of our interpretation we propose an alter-
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native frictionless model which features decreasing returns to scale in production

and a �ow �xed production cost. Productivity or demand shocks are stochastic

and follow a Markov chain. We �nd that a regime-switching process for these

shocks is crucial for matching the higher moments in the data.

We use the simulated method of moments to estimate this model using data

for the largest (top quartile) �rms in Compustat data set. These �rms are used

by FHP as the frictionless benchmark, since they are less likely to be a¤ected by

�nancial and informational frictions.

We use our parameter estimates to simulate our model and create a simulated

panel of �rm-level data. We then compare regressions from the simulated data

to our regressions from the Compustat sample. Regressions on simulated data

feature cash-�ow e¤ects similar to those in the Compustat sample.

Why do cash-�ow e¤ects emerge in our simulated data even though �rms face

no �nancial or informational frictions? The �rm�s value function is not linearly

homogeneous and the shadow (marginal) value of capital is not proportional to the

average value of capital (average Q). Average Q is no longer a su¢ cient statistic

for the shadow value of capital which is the sole determinant of investment. The

shadow value of capital determines investment, but this shadow value is a function

of all the state variables in the model: the capital stock and the shock (and the

regime, if there is regime-switching). A single independent variable no longer

summarizes all the state variables, so any additional independent variable that is

correlated with the state variables has explanatory power in a regression equation.

Related research hypothesizes that various forms of misspeci�cation can gener-

ate an empirical correlation between investment and cash �ow, and thus masquer-

ade as �nancial frictions. The role of decreasing returns to scale in the revenue

function has been seriously considered as early as Schiantarelli and Georgoutsos

(1990), who explore the implications of monopolistic competition in a Q model
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of investment. They show, using aggregate data, that this feature can explain

an accelerator-type e¤ect of output on investment, even controlling for current

and lags of Tobin�s Q . Gomes (2001) models �rms facing costly external �nance

and no adjustment costs, as well as �rms with no external �nancing friction. He

shows that it is possible to �nd no cash �ow e¤ect at all, even when there is a �-

nancing friction, and conversely, to �nd a cash �ow e¤ect in simulated regressions

even when external �nance is not costly in the model. Cooper and Ejarque (2000)

show that a model with decreasing returns in the revenue function and quadratic

adjustment costs, like ours, can generate empirically plausible cash �ow e¤ects

by calibrating their model to match the estimated cash �ow e¤ect in a panel of

data, also using simulated method of moments. Their later (2003) paper, adds

a �nancing constraint to the model and shows that the data cannot distinguish

between a �rm facing a simple �nancing constraint and one facing curvature in

the revenue function, again calibrating to match the cash �ow e¤ect. Abel and

Eberly (2001, 2005) show that when �rm value contains growth options, these

options drive �rm value, but do not continuously a¤ect investment. Continuous

investment is instead highly correlated with cash �ow, with occasional investment

spikes associated with exercise of growth options.

This work is complementary to ours, in showing that cash �ow e¤ects can

be generated by deviations from the linear homogeneity assumption. Our paper

takes a more general approach, by specifying a simple Cobb-Douglas model with

quadratic adjustment costs and asking which parameters best �t observed �rm-

level data. It is important to our approach that we do not calibrate to �t a

friction � neither theoretical nor empirical. Instead, our null is a neoclassical

speci�cation, and we estimate to �t only the univariate empirical moments of the

�rm�s investment, cash �ow, and value (Tobin�s Q ). In this way we generate a

neoclassical benchmark - against which frictions can be discerned.
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Results in the large empirical literature on �nancial frictions are suggestive

of our �ndings. Gilchrist and Himmelberg (1995) construct a measure of Tobin�s

Q using a VAR methodology. When they include cash �ow as an explanatory

variable for forecasting Tobin�s Q , the power of cash �ow to predict investment is

diminished (disappearing in some subsamples) for large �rms. This is consistent

with our misspeci�cation argument. Similarly, Erickson and Whited (2001) test

for cash �ow e¤ects in �rm level data and �nd that when they go beyond a

classical measurement error speci�cation and instead allow for higher (third) order

moments and heteroskedasticity, evidence of a cash �ow e¤ect disappears for both

large and small �rms.

2. The Model of the Firm

The model of the �rm that we consider features decreasing returns to scale in

production, quadratic adjustment costs in investment, a �xed cost of production,

and stochastic total factor productivity.

The �rm�s problem is given by the following Bellman equation, where we use

x0 to denote next period�s value of x:

V (k; z) = max
i;k0
[zk� � �� � (i=k � �)2 k � i

+�

Z
V (k0; z0)F (dz0; z)],

k0 = i+ (1� �)k.

Here V (k; z) represents the value of a �rm that has capital k and total factor

productivity, z. The behavior of z is governed by the distribution F (:). We denote

the discount factor by �. The �rm�s output is zk�, where � is the degree of returns

to scale. The variable � represents a �xed production cost paid in every period.

Capital depreciates at rate �. Investment is subject to quadratic adjustment costs,
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which are represented by the term �(i=k� �)2. This formulation has the property
that adjustment costs are zero whenever the capital stock remains constant. The

parameter � controls the magnitude of the adjustment costs.

We consider two versions of the model. In the �single-regime model�z follows

a Markov chain with support:

z 2 f�� �; �; �+ �g .

In the �regime-switching model�the support of z is given by:

z 2
�
�L � �L; �L; �L + �L; �H � �H ; �H ; �H + �H

	
where �L < �H . Productivity alternates between two regimes, the low regime

(�L��L; �L; �L+�L) and the high regime (�H��H ; �H ; �H+�H). The evolution
of z is governed by a Markov chain. The transition matrix associated with this

Markov chain has the property that both the high and low regimes are highly

persistent and there is a small probability of switching between regimes.

The model is solved by value-function iteration. We assume that k can only

take nk discrete values. We start with a guess for the value function, V 0(k; z)

for each pair (k; z). We compute the policy function k
0
= h0(k; z)by �nding the

value of k0 that maximizes the value of the �rm for each pair (k; z). The new

value function, V 1(k; z) is given by the following equation with m = 1:

V m(k; z) = max
i;k0
[zk� � �� � f[k0 � (1� �)k] =k � �g2 k � [k0 � (1� �)k]

+�

Z
V m�1(k0; z0)F (dz0; z)]

k0 = i+ (1� �)k

We use the V 1(k; z) to �nd a new policy function k
0
= h1(k; z) and a new value

function, V 2(k; z). We continue to iterate until V m�1(k; z) and V m(k; z) converge

for every pair (k; z).
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3. Estimation

3.1. Data

To estimate the model we use a balanced panel of Compustat �rms with annual

data for the period 1981-2003. Using a balanced panel introduces a selection bias

towards more stable �rms which are the focus of our study. Our sample includes

776 �rms and roughly 14,000 �rm-year observations. We focus our analysis on

the top quartile of �rms sorted by size of the capital stock in 1981 but we provide

comparisons across quartiles. The model leads us to look at four main variables:

investment in property, plant, and equipment, the physical capital stock, Tobin�s

Q , and cash �ow. We exclude from our sample �rms that have made a major

acquisition, to help ensure that investment measures purchases of new property,

plant, and equipment. We estimate the physical capital stock using the perpetual

inventory method, using book value as the starting value and four-digit industry-

speci�c estimates of the depreciation rate. Tobin�s Q is calculated as the market

value of equity plus the book value of debt, divided by the capital stock estimate.

Cash �ow is measured using the Compustat item for Income before extraordinary

items + depreciation and amortization + minor adjustments. We describe the

data in more detail in the appendix.

In Table 1 we report summary statistics for the fourth quartile (largest) �rms

in our sample, both for the 1981-2003 period and for two subperiods, 1981-1992

and 1993-2003. The median value of the variables that we consider are similar

to those reported in other studies using Compustat data. The median values are

1.3 for Q , 0.15 for the investment rate, and 0.17 for the ratio cash �ow/capital

stock. We report the standard deviations for logarithms as well as the levels of

the main variables so that their volatility can be compared. Q is the most volatile

variable, closed followed by the investment, I=K. Cash �ow is much less volatile
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than investment. All variables except the logarithm of the stock of capital exhibit

positive skewness. There is more skewness in the full sample than in each of the

two subsamples. This observation, along with the signi�cantly higher values of the

mean and standard deviation of Q and cash �ow in the second subsample, leads

us to consider a regime switching model in our estimation strategy. We return to

this point when we discuss estimation and the regime-switching model. Finally,

the data exhibit serial correlation, especially in the (log) capital stock and Q , but

to a lesser extent in investment and cash �ow.

We use some simple regressions to summarize some features of the data. In a

pooled, time-series-cross-section regression of investment on Tobin�sQ , we obtain:

I

K
= 0:14

(0:002)
+ 0:01
(0:0004)

Q; adjusted R2 = 0:16.

These regression coe¢ cients are similar to those obtained in other empirical stud-

ies. The coe¢ cient on Tobin�s Q is quantitatively small, but signi�cant, with

modest explanatory power for investment. When we add cash �ow as an explana-

tory variable we �nd:

I

K
= 0:12

(0:002)
+ 0:003
(0:0005)

Q+ 0:17
(0:009)

cash �ow
K

, adjusted R2 = 0:24.

Including cash �ow increases signi�cantly the explanatory power of the regression

and reduces the size and signi�cance of the coe¢ cient on Tobin�s Q . Cash �ow

itself has a large and statistically signi�cant e¤ect on investment.

Abel and Eberly (2003) point out that the presence of skewness in Q sug-

gests that a simple linear regression is not the best �t. They suggest a semi-log

speci�cation, which in these data yields:

I

K
= 0:14

(0:0016)
+ 0:06
(0:0016)

log (Q) ; adjusted R2 = 0:20.

When cash �ow is added to this semi-log speci�cation we �nd
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I

K
= 0:22

(0:005)
+ 0:03
(0:002)

log (Q) + 0:039
(0:002)

log

�
cash �ow
K

�
; adjusted R2 = 0:33.

These results con�rm the presence of a signi�cant cash-�ow e¤ect in our sample

of large �rms, in both the linear and the semi-log regression speci�cation. Scatter

plots of investment rates relative to Tobin�s Q and cash �ow help clarify why

the semi-log speci�cation performs better. Figure 1a shows a linear investment

regression �t to the data on investment versus Q , and in panel b we �t instead to

log(Q ). Figures 2a and 2b show the same regressions for investment versus cash

�ow, with similar results. The semi-log speci�cation has a better �t, increasing

the R2 by more than 10 percentage points in both cases, with signi�cant e¤ects

of both Tobin�s Q and cash �ow on �rm-level investment. In what follows, we

use the semi-log speci�cation as our benchmark when we examine some of the

implications of our estimated model relative to the data.

3.2. Estimation Procedure

We estimate the model using the simulated method of moments proposed by Lee

and Ingram (1989). We �rst use our data to estimate the vector of moments 	D.

Next, we choose the vector of parameters, �, that we want to estimate. For each

candidate parameter vector, �, we simulate our model and compute simulated

moments, which we denote by 	(�). Our parameter estimates are obtained by

minimizing the weighted distance, L, between actual and simulated moments:

L(�̂) = min [	(�)�	D]0W [	(�)�	D] . (3.1)

The weighting matrix, W , is obtained using the variance-covariance matrix of the

empirical moments, 
D:

W =
1


D(1 + 1=k)
, (3.2)
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where k = length of simulation/length of sample. The intuition underlying the

minimization problem (3.1) is that it penalizes heavily the di¤erence between

simulated and empirical moments only when the empirical moments are precisely

estimated.

We estimate the matrix 
D using a block-bootstrap method. This method

works as follows. We form m samples. Each sample consists of data for n �rms

sampled with replacement from our data set. For each of the m samples we

compute the vector of empirical moments. We use the m observations on the

vector of moments to estimate the variance-covariance matrix of the empirical

moments, 
D.

We solve the minimization problem (3.1) using an annealing algorithm. The

�rst step in this algorithm is to choose initial values for the parameter vector,

�, as well as admissible ranges for each of the parameters in the vector. In the

second step, we set the �temperature�and the step size. As we discuss below, the

temperature controls the probability that, given the best parameter vector so far,

��, we accept a parameter vector �0 that yields a higher value of L, L(�0) > L(��).

This procedure is used to avoid convergence to a local minimum. We start with

a high temperature value, so that the algorithm explores di¤erent regions of the

state space. The third step is to generate a new parameter vector, �0, by adding

random shocks to the elements of �� within their admissible range. The fourth

step is to solve the model using value-function iteration for the parameter vector

�0. In the �fth step we simulate 1940 representative �rms. This number is 10

times the length of our sample, so the value of k in (3.2) is equal to 10. Step

six is to simulate a panel of �rms and calculate simulated moments In step seven

we compute L(�0). If L(�0) < L(��) we set �� = �0. If L(�0) > L(��) we set

�� = �0 with probability exp [� (L(�0)� L(��)) =temperature]. In step nine we
reduce the values of temperature and step size. We go back to step three. We
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continue to iterate until we can no longer lower the value of L. The vector of

parameter estimates is the one that generates the lowest value of L. We denote

this vector by �̂.

The standard errors of the estimated parameters are computed as


̂ =
(�0W�)�1

n
,

where � is the matrix of derivatives,

� =
@	(�̂)

@�̂
,

which we compute numerically.

4. Results: single regime model

4.1. Parameter and moment estimates

We report the parameters estimates and standard errors in Table 2. Our estimate

of the adjustment cost parameter, �, is 0.541 (with a standard error of 0.144).

This estimate implies that the average investment adjustment cost is 0.7 percent

of sales. Our estimate for the �xed cost of operating, �, is 0.010 (with a standard

error of 0.038). This estimate implies annual �xed operating costs that are 17

percent of annual sales. The mean value of the shock z is 0.166, and the spread

is plus or minus 0.086. As we discuss below, these values match the mean and

standard deviation of cash �ow in the data.

Table 2 reports summary statistics for the Compustat data, compared to those

for the simulated �rms in the model, using the estimated model parameters. The

left-hand column reports the statistics from the data, using the full 1981-2003

sample. The right-hand column reports the moments from the model, where

those reported in bold (red) were used in the estimation procedure to match the
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model to the data (the moments in the 	D vector). The algorithm matches all

of these moments closely. The other moments in the column, however, are not

"targeted" by the algorithm. These results indicate that the simple model, with

modest decreasing returns to scale, matches well the serial correlation in sales,

cash �ow, and investment, has slightly lower serial correlation in Q than in the

data, but has a much lower standard deviation and skewness of Q than is found

in the data. We add i.i.d. measurement error to our estimate of Q to match the

standard deviation of Q in the data which also increases the skewness of Q (now

higher than in the data); however, the i.i.d. measurement error reduces the serial

correlation of Q even further below that in the data. In order to further evaluate

the performance of the model relative to the data, we regress investment on its

determinants - both the state variables that are only observable in the model, as

well Q and cash �ow, as we did earlier in section 3.1 with the data.

4.2. Simulated regression results

Table 3 reports the results of estimating linear regressions on data from �rms

simulated from the estimated model. The �rst column demonstrates that using a

semi-log speci�cation on the true state variables of the model (k and the shock,

z) yields an R2 of 0.95, providing a very good approximation to the model. When

we use the true measure of Tobin�s Q , the model �ts nearly as well (R2 = 0.93),

so Q provides a very good proxy for the two state variables. However, when we

use the noisy measure of Q that better �ts the properties of Q , the R2 falls to

0.09 and the coe¢ cient on Q is 0.039 (compared to 0.38 for the true Q ). When

cash �ow is added to the regression with noisy Q , the coe¢ cient on Q falls below

0.01, cash �ow has a coe¢ cient of 0.08, and the R2 jumps up to 0.68. The �nal

column substitutes the value of the shock, z, for cash �ow in this regression; this

substitution gives a coe¢ cient estimate and R2 that are nearly the identical to
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using cash �ow as a dependent variable. Since there are no frictions in the model

that would give a direct role to cash �ow, these results strongly suggest that cash

�ow proxies for the impact of the shock.

While these results are instructive, it is clear from Table 3 that the model does

not match the data along several dimensions, in particular the volatility of Q and

the skewness of Q , cash �ow, and investment. The former we address by adding

i.i.d. measurement error. We also experimented with adding a behavioral bias to

the model. Speci�cally, we assumed that managers forecast fundamentals using

the correct Markov chain, but we allowed investors to use a distorted Markov

chain. A Markov chain with higher persistence (larger values on the diagonal)

generated enough volatility in Q , but did not address the skewness of Q found in

the data.

We have already shown that a simple neoclassical model can generate a cash

�ow e¤ect, however, our intent is to provide a neoclassical model that also �ts the

broad characteristics of the �rm-level data. In order to address the skewness in Q

(and in the other variables) we add a regime-switching component to the Markov

chain.

5. Results: regime switching model

5.1. Parameter and moment estimates

The regime switching model allows for a second regime in the productivity shock

z. In this case, we estimate the same structural parameters in the single regime

model, as well an additional three parameters: the average value and range of the

shock in the second regime, plus the regime-switching parameter. The estimated

model parameters and standard errors are reported in Table 5. The estimated

adjustment cost parameter � is 0:718 (with a standard error of 0:019), which im-

plies that the average investment adjustment cost is 1.0% of sales. The estimated
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�xed cost of operating, � is 0.022 (with a standard error of 0.009), which implies

that annual �xed operating costs are 14% of annual sales. These values are very

similar to those in the single regime model, and the standard errors are lower.

Figure 3 plots the shocks in the two regimes. It is interesting to note that the

data gravitate toward two overlapping regimes, where the high regime has a higher

mean productivity, but also a higher standard deviation. In fact, the low shock

in the high regime is lower than the low shock in the low regime. All of these

parameters have low standard deviations and are precisely estimated. The esti-

mated Markov chain (Table 6) exhibits substantial persistence. We calibrated the

within-regime autocorrelation to 0.6 to match the serial correlation in the data.

The regime switching parameter is precisely estimated at 0.057, which gives the

total probability of switching from one regime to the other, but switches can occur

from either the middle state or that state closest to the alternative regime (e.g.,

transiting from the highest low state to the high regime, or from the lowest high

state to the low regime).

Table 7 reports summary statistics for the Compustat data, compared to those

for the simulated �rms in the model, using the estimated model parameters with

regime switching. The left-hand column reports the statistics from the data, using

the two subsamples, as well as the full 1981-2003 sample. The right-hand column

reports the moments from the model for the low regime, the high regime, and the

combined data, where those highlighted were used in the estimation procedure to

match the model to the data (the moments in the 	D vector). The algorithm

matches all of these moments closely, as the algorithm is designed to do. The

other moments in the column, however, are not "targeted" by the algorithm.

These results indicate that the addition of regime switching improves the �t of the

model, particularly for the higher moments in the data. The standard deviation

and skewness of Q are substantially higher, and the model generates skewness in
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the investment and cash �ow that are much more like the data (even a bit too

much skewness). At the same time, the serial correlation properties are enhanced

compared to the single regime model. Before running data regressions, we again

match the standard deviation ofQ by adding measurement error, but in the regime

switching model this measurement error adjustment is much smaller, since the

fundamental volatility of Q is higher in this case. We add 20 percent measurement

error to Q , with serial correlation to preserve the serial correlation in Q , which

already matches the data very well.1

In order to better understand the dynamics of the model, we calculated the

elasticity of each moment in the 	D vector with respect to the parameters of the

model. This gives an indication of how changes in the parameter values a¤ect the

performance of the model. The matrix of elasticities is reported in Table 8. We

highlight those which have the largest impact. In the �rst row of the table, for

example, we see that average Q in the �rst (low) regime is largely determined by

the �xed operating cost, which lowers average Q , and then the average shock in

the low regime �L, as well as the average shock in the high regime �H and the

probability of transiting to the high regime. Thus average Q is largely determined

by expected cash �ow, net of operating costs, as one would expect. Average

Q in the high regime depends most on the average shock in the high regime.

Importantly for our later results, average cash �ow is largely determined by the

average shock. Similarly, the standard deviation of cash �ow in each regime has

a unit elasticity with respect to the standard deviation of shocks in the regime.

Finally, the standard deviation of investment (investment rate, i=k) is determined

largely by the adjustment cost parameter � (negatively) and the mean shock in

the low regime (also negatively), since this determines the volatility of investment

1To be precise, we generate Qnoise = Q exp("t); where "t+1 = 0:73"t + �t+1 and �t v
N(0; 0:145) and the standard deviation of " is 0.20.
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across regimes.2 The next two �gures, Figure 4a and 4b, plot the value functions

and policy functions for each state in the two regimes as a function of the �rm�s

capital stock. Note that even though the shock regimes are overlapping, the value

and policy functions are not. This owes to the estimated transition structure of

the model. For example, even though the lowest individual shock is in the high

regime, there is a higher probability of transiting from this state to the highest

possible states, so the value of the �rm is higher in this state than for a higher

realization in the lower regime (where the �rm�s future prospects are bleaker).

5.2. Simulated regression results

In order to further evaluate the performance of the model relative to the data,

we regress investment on its determinants - both the state variables that are only

observable in the model, as well Q and cash �ow, as we did earlier with the single

regime model and in section 3.1 with the Compustat data. Table 9 reports these

results for the two regime model. In the �rst column, we use the state variables

from the model to explain investment in a semi-log speci�cation. As we found

previously, the semi-log speci�cation does a good job of recovering the model,

with an R2 of 0.97. When we revert however, to standard observable variables,

we �nd that a regression of investment on Tobin�s Q has an R2 of only 0.62,

even when we control for the regime (which is an additional state variable in our

model not typically included in Q models). If we ignore the regime switching

and just regress investment on Tobin�s Q , the coe¢ cient on Q is only 0.091 and

the R2 falls to 0.38; if we use a noisy measure of Q that matches the empirical

properties of Q , the coe¢ cient on Q falls further to 0.068 and the R2 falls to

2Notice that the elasticity of the investment standard deviation with respect to �H is 1.7,
while the elasticity with respect to �L is -2.0. Since the two coe¢ cients are of opposite sign
and similar magnitude, this suggests that the di¤erence between the two is what matters - or
the average spread between the two regimes.
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0.28. The importance of adding measurement error in Q falls signi�cantly in

the regime switching model; the regime-switch already disrupts the relationship

between investment and the shocks, as we describe in more detail below. If we

follow the empirical literature and add cash �ow to this regression, the coe¢ cient

on Q falls to 0.05, cash �ow enter signi�cantly with a coe¢ cient of 0.04 and the

R2 recovers to 0.39. As we demonstrated with the single regime model, this is

nearly identical to the regression results if we include the shock realization instead

of cash �ow, as shown in the last column of the table, suggesting again that cash

�ow proxies for the shock.

The next table, Table 10, exploits the regime switching implications to further

explore the �t of the model. This table reports regressions run on the simulated

data in the �rst two columns, and then new regressions on the Compustat data

in the two right-hand columns. Since we emphasize the importance of the two

regimes in the model, we now use our two subsamples of data as empirical proxies

for the two regimes. In the �rst column, we regress investment on a dummy

for the high regime, as well as Tobin�s Q. Q has a signi�cant positive e¤ect

on investment, but the high regime dummy variable enters negatively, since Q

is disproportionately high (compared to investment ) in the high regime. These

results are nearly identical to the results for the data reported in the third column.

The coe¢ cient on Q is 0.07 (versus 0.086 in the model), the high regime dummy is

signi�cantly negative, and the R2 is 0.33. When we add cash �ow to this regression

in the model, it enters positively with a coe¢ cient of 0.039, reduces the coe¢ cient

on Q and slightly reduces (in absolute value) the coe¢ cient on the high regime

dummy; while the R2 increases modestly. In the data, the results are very similar.

The coe¢ cient on cash �ow is 0.034, the coe¢ cient on Q falls by about a third,

the high regime dummy is smaller in absolute value, and the R2 of the regression

increases.
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Thus, the regime switching model not only improves the �t of the model to

the moments of the �rm, it also matches the covariation and partial covariation

among investment, cash �ow, and valuation (Tobin�s Q ) observed in the data.

Figure 5 demonstrates the role of regime switching in understanding the invest-

ment regressions. In the data and in the simulation, both the true Q and the

"noisy" Q have relatively poor explanatory power for investment when there is

regime switching (columns 3 and 4 of Table 9). Cash �ow improves the �t of the

regression, but not nearly as dramatically as it did in the single regime model,

where using cash �ow to proxy the shock brought the regression R2 from 0.09 to

0.68 �whereas with regime switching, the addition of cash �ow only increases the

R2 from 0.28 to 0.39.3 Figure 5 plots the investment rate, I=K, as a function of

the capital stock for each value of the shock, z. There is no longer a monotonic

relationship between the current shock and current investment. The lowest in-

vestment rates occur on the lowest branch of the graph, when z = 0:1188 in the

low regime. However, when z takes on its lowest value, z = 0:0987, in the high

regime, investment is substantially higher. This occurs because of the transition

probability within the regimes. Within the high regime, even when current z is

very low, future prospects are bright because of the higher probability of tran-

siting to the most favorable states. In the low regime, current z can be higher,

but the prospects for the future are relatively bleak and thus investment remains

low. The transition dynamics within and across regimes disrupt the monotonic

relationship between investment and the shock, and hence between investment

and cash �ow. As Table 10 shows, however, a simple linear control for the regime

does not restore the explanatory power of the regression, since the regimes do not

di¤er by a constant shift term.

3When the dummy for the regime is included, the addition of cash �ow to the Q regression
increases the R2 from 0.33 to 0.37 (see Table 10).

17



6. Extensions

In addition to the �ndings reported above, we explored a number of other model

features and speci�cations in order to understand their implications. In particular,

we looked at di¤erent speci�cations of the adjustment cost function, simple forms

of borrowing constraints, and a non-constant interest rate.

The skewness in investment led us to consider asymmetric adjustment costs,

both in the form of asymmetric quadratic adjustment costs and an irreversibil-

ity constraint. We examined an asymmetric quadratic adjustment cost, with a

di¤erent parameters � for high and low investment. This generated skewness in

investment, but not in cash �ow. Once we allowed for skewness in cash �ow

through the shock process, the model naturally generated investment skewness

so additional asymmetry from adjustment costs was not necessary quantitatively.

Similarly, for these large �rms, an irreversibility constraint was not quantitatively

important. It rarely binds and did not have a noticeable impact on the results.

Other authors, such as Doms and Dunne (1998), using smaller �rms and dis-

aggregated plant data, observe that aggregating to large �rms tends to smooth

out these non-convexities, so it is not surprising that this feature is not evident

quantitatively in our sample in the moments we examine.

We also added a borrowing constraint to our model to examine whether it

could identi�ed if it was present. We used a simple speci�cation that does not

require adding an additional state variable to the model: we limiting borrowing to

a �xed percentage of the capital stock. This constraint binds frequently, especially

at the transition from the low regime to the high regime when the �rm would like

to grow quickly. However, even when only 10% of the capital stock can be used as

collateral, there is no discernible e¤ect on the moments of the model. This does

not mean that there are no borrowing constraints; rather, it means that if they
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are present, they are di¢ cult to detect in the data with the methods we have used

here (which mirror much of the literature in the regression format).

Finally, we added interest rate variation by including the actual path of real

interest rates to the model as we solved the optimization problem of the �rm and

the estimation algorithm. This generalization had no e¤ect on the results, so we

used a constant discount rate throughout our reported results.

7. Conclusions and future work

This research speci�es and estimates a benchmark neoclassical model to �t the

empirical moments of data on large �rms. The important features of the model are

decreasing returns to scale (or imperfect competition), quadratic adjustment costs

on investment, a �xed operating cost, and regime switching productivity shocks.

The estimated parameterization broadly matches the average, standard deviation,

skewness, and persistence of investment, cash �ow, and Tobin�s Q . Moreover,

simulated data from the model also closely matches the covariation and partial

covariation of investment with Tobin�s Q and cash �ow as measured by regression

analysis, even though the model was calibrated as a frictionless neoclassical model.

This speci�cation was intentional, since other frictions can be present in the econ-

omy and in the data, but they can only be identi�ed relative to a well-speci�ed

neoclassical benchmark. A friction that is correlated with the misspeci�cation of

the model cannot be separately identi�ed. The model estimated here is intended

to provide this benchmark.

As we develop the model further, we intend to include a more sophisticated

modelling of capital structure. This requires solving a more challenging numerical

problem, but allows us to address quantitative questions in corporate and macro

�nance.
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Table 1. 

 
 
 
For each variable, we compute the time series average for each firm in the sample, and report the 
median across firms.  “Q” is Tobin’s Q, I is investment in property, plant, and equipment, and K is 
the capital stock.  Construction of the variables is described in the text and in the data appendix. 
 

Full Sample
Median Across Large Firms (4th quartile) 1981-2003 1981-1992 1993-2003

Time-Series Average
Q 1.30 0.95 1.89
I/K 0.15 0.15 0.16
Cash Flow/K 0.17 0.15 0.20
Sales/K 1.54 1.38 1.97
log(K) 7.73 7.59 7.97

Time-Series Standard Deviations
Q 0.66 0.26 0.59
log(Q) 0.43 0.28 0.28
I/K 0.06 0.05 0.05
log(I/K) 0.38 0.34 0.30
Cash Flow/K 0.08 0.05 0.09
log(Cash-Flow/K) 0.26 0.15 0.22
log(K) 0.23 0.15 0.12

Skewness
Q 0.64 0.19 0.43
I/K 0.46 0.38 0.39
Cash Flow/K 0.26 -0.04 0.08
Sales/K 0.66 0.10 0.42
log(K) -0.08 0.08 0.03

Serial Correlation
Q 0.70 0.56 0.42
I/K 0.45 0.33 0.36
Cash Flow/K 0.43 0.33 0.21
Sales/K 0.71 0.56 0.52
log(K) 0.83 0.68 0.73

Sub-Samples



Table 2: parameter estimates for the single regime model 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Parameter Estimate (standard error) 
Adjustment cost : ξ 0.541 (0.144) 
Fixed cost: φ 0.010 (0.038) 
Mean shock: μ 0.166 (0.132) 
Shock range: σ 0.086 (0.074) 
Calibrated parameters  
Discount factor: β 0.977 
Returns to scale: α 0.80 
Depreciation rate: δ 0.15 
Persistence: ρ 0.60 



Table 3. Summary statistics for Compustat data versus the single regime 
model 

Median Across Large Firms 1981-2003 Single Regime Model

Time-Series Average
Q 1.2980 1.3160
I/K 0.1497 0.1514
Cash Flow/K 0.1689 0.1737

Time-Series Standard Deviations
Q 0.6253 0.1793
Qnoise 0.6194
I/K 0.0548 0.0541
log(I/K)
Cash Flow/K 0.0781 0.0791
log(Y/K)
log(K)

Skewness
Q 0.64 0.1098
Qnoise 0.64 1.3915
I/K 0.46 0.1041
Cash Flow/K 0.26 -0.0706

Serial Correlation
Q 0.84 0.5151
Qnoise 0.84 0.0328
I/K 0.53 0.4847
Cash Flow/K 0.60 0.61
Sales/K 0.82 0.7616
log(K) 0.95

Data



Table 4. Regression results from the single regime model 
 

 
 

Dependent variable I/K

Regression 1 2 3 4 5

Constant 0.2101 0.0509 0.1411 0.2942 0.3514
0.0011 0.0004 0.0008 0.0015 0.0019

ln(q) 0.3789
0.0014

ln(qnoise) 0.0389 0.0089 0.0395
0.0016 0.001 0.0016

ln(cash flow/k) 0.0769
0.0007

ln(k) -0.1499
0.0009

ln(z) 0.136 0.1075
0.0004 0.001

R2 0.952 0.9257 0.0897 0.6817 0.7099



Table 5: parameter estimates for the regime-switching model 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Table 6: estimated Markov chain for the regime-switching model 
 
 

      
 

 
 
 
 
 

Parameter Estimate (standard error) 
Adjustment cost : ξ 0.718 (0.019) 
Fixed cost: φ 0.022 (0.0086) 
Low regime mean shock: μL 0.168 (0.014) 
Low regime shock range: σL 0.0496 (0.0037) 
High regime mean shock: μH 0.2215 (0.017) 
High regime shock range: σH 0.1228 (0.0086) 
Switching parameter 0.057 (0.0009) 
Calibrated parameters  
Discount factor: β 0.977 
Returns to scale: α 0.80 
Depreciation rate: δ 0.15 
Persistence: ρ 0.60 

High Regime
0.0987, 0. 2215, 0.3443

Low Regime
0.1188, 0.1684, 0.2180

0.64 0.32 0.04 0 0 0
0.157 0.6671 0.157 0.019 0 0

0.0385 0.3078 0.6157 0.038 0 0
0 0 0.038 0.6157 0.3078 0.0385
0 0 0.019 0.157 0.6671 0.157
0 0 0 0.04 0.32 0.64



Table 7: Summary statistics for Compustat data versus the regime-
switching model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Median Across Large Firms 1981-1992 1993-2003 1981-2003 Low High All

Time-Series Average
Q 0.9515 1.8919 1.2980 0.9324 1.8083 1.3924
I/K 0.1457 0.1611 0.1497 0.1324 0.1686 0.1515
Cash Flow/K 0.1546 0.1994 0.1689 0.1433 0.1902 0.1679
Sales/K
fcost/y

Time Series Standard Deviations
Q 0.2560 0.5891 0.6253 0.1507 0.3112 0.503
Qnoise 0.2592 0.5036 0.5987
I/K 0.0497 0.0457 0.0548 0.0398 0.0604 0.0547
log(I/K)
Cash Flow/K 0.0458 0.0891 0.0781 0.0453 0.0885 0.0751
log(Y/K)
log(K)

Skewness
Q 0.19 0.43 0.64 0.4354
Qnoise 0.64 0.8352
I/K 0.38 0.39 0.46 0.5452
Cash Flow/K -0.04 0.08 0.26 0.4303
Sales/K
log(K)

Serial Correlation
Q 0.84 0.8823
Qnoise 0.84 0.8298
I/K 0.53 0.685
Cash Flow/K 0.60 0.6329
Sales/K 0.82 0.555
log(K) 0.95

Data



-0.1 -3.0 6.9 0.1 8.1 0.0 0.3
0.0 -0.6 0.4 0.0 2.6 0.1 -0.1
0.0 -0.5 2.2 0.0 0.0 0.0 -0.1
0.0 -0.1 0.0 0.0 0.7 -0.1 0.0
0.0 0.1 -1.2 1.0 -0.3 0.0 0.1
0.0 0.0 -0.2 0.0 -0.9 1.0 0.1
0.0 0.1 -1.0 0.2 -0.5 0.7 -0.1

-0.4 0.0 -2.0 0.1 1.7 0.6 -0.2

 
 
 
Table 8: Elasticity of moments with respect to the parameters for the regime-switching model 
 
 
 

         
  

 
 

Average qL 

Average qH 
Average cash flowL 

Average cash flowH 

Std dev cash flowL 
Std dev cash flowH 
Std dev cash flow 
Std dev i/k 

  L HL H 



Table 9. Regression results from the regime-switching model 
 

 

Dependent variable I/K

Regression 1 2 3 4 5 6

Constant 0.1891 0.1509 0.1272 0.1330 0.2243 0.2427
0.0003 0.0003 0.0003 0.0003 0.0100 0.0011

Dummy High Regime 0.1505 -0.1168
0.0002 0.0007

ln(q) 0.2324 0.0908
0.0010 0.0006

ln(qnoise) 0.0683 0.0495 0.0462
0.0005 0.0005 0.0005

ln(cash flow/k) 0.0403
0.0005

ln(k) -0.1340
0.0002

ln(z) 0.1104 0.0608
0.0001 0.0006

R2 0.9672 0.6197 0.3836 0.2810 0.3942 0.4341



 
Table 10. Regression results from the regime-switching specification in the Compustat data versus the model 
 

 

Dependent variable I/K

Regression

Constant 0.1384 0.2146 0.1570 0.2238
0.0003 0.0010 0.0020 0.0050

Dummy High Regime -0.0193 -0.0096 -0.045 -0.039
0.0007 0.0007 0.003 0.003

ln(q)

ln(qnoise) 0.0860 0.0589 0.0700 0.0450
0.0008 0.0008 0.0020 0.0020

ln(cash flow/k) 0.0391 0.034
0.0005 0.002

ln(k)

ln(z)

R2 0.2941 0.3973 0.3320 0.3677

Model Data



 
Figure 1a: Investment rate (I/K) versus Tobin’s Q 

 
Figure 1b. 

 

I/K and q

I/K = 0.06ln(q) + 0.1406
R2 = 0.2881
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Figure 2a: Investment rate (I/K) versus cash flow (CF/K) 

 
 
 
Figure 2b. 

 
 

I/K and CF/K

I/K = 0.0651Ln(CF/K) + 0.2796
R2 = 0.2956
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Figure 3a: Regime-switching model, value function by state in each regime  

 
Figure 3b: Regime-switching model, policy function by state in each regime 
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Figure 4: Regime-switching model, investment (I/K) by state in each regime 
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