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Abstract

We study the joint determination of fund managers’ contracts and equilibrium asset prices.

Because of agency frictions, investors make managers’ fees more sensitive to performance and

benchmark performance against a market index. This makes managers unwilling to deviate

from the index and exacerbates price distortions. Because trading against overvaluation ex-

poses managers to greater risk of deviating from the index than trading against undervaluation,

agency frictions bias the aggregate market upwards. They can also generate a negative rela-

tionship between risk and return because they raise the volatility of overvalued assets. Socially

optimal contracts provide steeper performance incentives and cause larger pricing distortions

than privately optimal contracts.
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1 Introduction

Asset management is a large and growing industry. For example, individual investors held directly

47.9% of U.S. stocks in 1980 and 21.5% in 2007, with the remainder held by financial institutions

of various types, run by professional managers (French (2008)). Asset managers’ risk and return is

measured against benchmarks, and performance relative to the benchmarks determines the man-

agers’ compensation and the funds they get to manage. In this paper we study how the delegation

of asset management from investors to professional managers affects equilibrium asset prices. Un-

like most prior literature, we endogenize both equilibrium prices and managers’ contracts, including

the extent of benchmarking. We also perform a normative analysis, comparing privately optimal

contracts to socially optimal ones.

We show that when agency frictions between investors and managers are more severe, man-

agers’ compensation is more sensitive to performance, and performance is tied more closely to a

benchmark. As a consequence, managers become less willing to deviate from the benchmark, and

the price distortions that they are hired to exploit become more severe. While distortions are exac-

erbated in both directions, i.e., undervalued assets become cheaper and overvalued assets become

more expensive, the positive distortions dominate, biasing the aggregate market upwards and its

expected return downwards. Indeed, overvalued assets account for an increasingly large fraction

of market movements relative to undervalued assets. Therefore, trading against overvaluation, by

underweighting the overvalued assets, exposes managers to greater risk of under-performing their

benchmark than trading against undervaluation.

In addition to exacerbating price distortions, agency frictions can generate a negative relation-

ship between risk and expected return in the cross-section. Such a negative relationship has been

documented empirically, with risk being measured by return volatility or CAPM beta, and contra-

dicts basic predictions of standard theories.1 Agency frictions can generate a negative risk-return

relationship because they raise the volatility of overvalued assets, through an amplification mech-

anism. Consider a positive shock to the expected cashflows of an overvalued asset. Because the

asset then accounts for a larger fraction of market movements, managers become less willing to

trade against overvaluation, and prefer instead to buy the asset. Their buying pressure amplifies

the price increase caused by the higher cashflows.

1Haugen and Baker (1996) and Ang, Hodrick, Xing, and Zhang (2006) document that expected return is negatively
related to volatility in the cross-section of U.S. stocks. The latter paper also documents a negative relationship between
expected return and the idiosyncratic component of volatility. Since volatility is negatively related to expected return,
it is also negatively related to CAPM alpha, which is expected return adjusted for beta, i.e., for systematic risk. Black
(1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) document that alpha is negatively related
to beta in the cross-section of U.S. stocks. The relationship between expected return and beta is almost flat during
1926-2012 (Frazzini and Pedersen (2014)), and turns negative during the second half of the sample (Baker, Bradley,
and Wurgler (2011)).
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Our model, presented in Section 2, is as follows. We assume a continuous-time infinite-horizon

economy with multiple risky assets and an exogenous riskless rate. An investor can invest in the

risky assets directly by holding a market index that includes all assets according to their supplies, or

indirectly by holding a fund run by a manager. Both investor and manager are price-takers, and can

be interpreted as a continuum of identical investors and managers. The manager’s contract consists

of a fee, paid by the investor. We assume that the fee must be an affine function of the fund’s

performance and the index performance, and we optimize over the coefficients of that function. The

manager chooses the fund’s portfolio. We model agency frictions by assuming that the manager

can additionally undertake a “shirking” action that lowers the fund’s return but delivers a private

benefit to him.

If the investor and the manager were the only agents in the model, then they would hold the

index because of market clearing. Equilibrium prices would adjust to make the index an optimal

portfolio, and the investor would not employ the manager because she can hold the index directly.

To ensure that the manager can add value over the index, we introduce a third set of agents, buy-

and-hold investors, who hold a portfolio that differs from the index. The portfolio choice of these

agents could be driven, for example, by corporate-control or hedging considerations.2 Assets that

are in low demand by the buy-and-hold investors must earn high expected returns in equilibrium,

so that the manager is induced to give them a weight larger than the index weight. Conversely,

assets in high demand must earn low expected returns so that the manager underweights them.

The former assets are undervalued, when measuring risk by the covariance with the market index,

while the latter assets are overvalued. By overweighting the undervalued assets and underweighting

the overvalued assets, the manager adds value over the index.

In Section 3 we solve the model in the case where there are no agency frictions. We show that

the manager’s fee does not depend on the index performance, and hence there is no benchmarking.

The fee depends only on the fund’s performance, in a way that implements optimal risk-sharing

between the investor and the manager, who are both risk-averse. A negative relationship between

risk and return in the cross-section of assets can arise even in the absence of agency frictions (but

is stronger when the frictions are present). Consider an asset that is in high demand by buy-and-

hold investors. This asset earns low expected return and is underweighted by the manager. The

reason why its return can be highly volatile is as follows. Following a positive shock to an asset’s

expected cashflows, the asset accounts for a larger fraction of the manager’s portfolio volatility.

The increase in volatility makes the manager less willing to hold the asset, and attenuates the

price increase caused by the improved fundamentals. The attenuation effect is weak, however, for

an asset that the manager underweights because the asset’s contribution to his portfolio volatility

2Fama and French (2007) perform a similar construction in a static setting and show how the presence of investors
not holding the market portfolio generates superior opportunities for other investors.
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is small. Therefore, the asset’s price is highly sensitive to the cashflow shock, resulting in high

volatility.

In Section 4 we solve the model in the case where there are agency frictions. We show that the

investor makes the manager’s fee more sensitive to the fund’s performance than in the frictions’

absence. This reduces the manager’s incentive to undertake the shirking action. It also exposes him

to more risk, but the manager can offset the increase in his personal exposure by choosing a less risky

portfolio for the fund. The investor restores the manager’s incentives to take risk by making the

fee sensitive to the index performance; this encourages risk-taking because the manager’s personal

exposure to market drops is reduced. Benchmarking, however, only incentivizes the manager to take

risk that correlates closely with the index, and discourages deviations from that benchmark. Thus,

the manager becomes less willing to overweight assets in low demand by buy-and-hold investors, and

to underweight assets in high demand. The former assets become more undervalued in equilibrium,

and the latter assets become more overvalued.

Agency frictions exacerbate not only cross-sectional price distortions but also the negative

relationship between risk and return. This is because they raise the volatility of overvalued assets.

Recall that in the absence of frictions, a positive shock to an asset’s expected cashflows is attenuated

by an increase in risk premium because the asset accounts for a larger fraction of the manager’s

portfolio volatility. In the presence of frictions, the risk premium instead decreases for overvalued

assets, and hence the shock is amplified. Indeed, the manager underweights overvalued assets, but

becomes less willing to do so when these assets account for a larger fraction of market movements.

Benchmarking amounts to a short position in the underweighted assets, which the manager seeks

to reduce when volatility increases.

The cross-sectional price distortions that agency frictions introduce do not cancel out in the

aggregate. We show that the positive distortions are more severe than the negative ones, biasing

the aggregate market upwards. This is because overvalued assets account, through the amplifica-

tion effect, for an increasingly large fraction of market movements relative to undervalued assets.

Therefore, trading against overvaluation exposes the manager to greater risk of under-performing

the index than trading against undervaluation.

Endogenizing fund managers’ contracts allows us to perform a normative analysis. In Section 5

we show that the contract chosen by a social planner provides the manager with steeper incentives

than the contract chosen by private agents. The price distortions under the socially optimal contract

are also larger. The inefficiency of private contracts can be viewed as a free-rider problem, by

interpreting our price-taking investor and manager as a continuum of identical such agents. When

one investor in the continuum gives steeper performance incentives to her manager, this induces

less shirking. At the same time, the manager offsets the increase in his personal risk exposure by
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choosing a less risky portfolio, hence exploiting mispricings to a lesser extent. Other managers,

however, remain equally willing to exploit mispricings, benefiting their investors. When all investors

give steeper incentives to their managers, mispricings become more severe in equilibrium, and all

managers remain equally willing to exploit them despite being exposed to more risk.

Throughout our analysis, we assume constant absolute risk aversion (CARA) utility for the

investor and the manager, and square-root processes for asset cashflows. Square-root processes

have the property that the volatility of an asset’s cashflows per share increases with the cashflow

level. This property is realistic (e.g., the risk of a firm in absolute terms, i.e., not relative to the

firm’s size, increases with size) and is key for our results. We underscore its importance in Section

6, where we consider a familiar CARA-normal setting, where the volatility of cashflows per share

is constant. We show that the risk-return relationship is always positive and agency frictions do

not affect the aggregate market. The combination of CARA utility and square-root processes for

cashflows is to our knowledge new to the literature, including in a frictionless setting. We show that

it yields closed-form solutions for asset prices and can accommodate any number of risky assets.

The effects of asset management on equilibrium prices are the subject of a growing literature.

Our paper is closest to the strand of that literature that focuses on managers’ contractual incen-

tives.3 Brennan (1993) assumes a static setting where some investors have preferences over the

return relative to a benchmark. Equilibrium expected returns are given by a two-factor model,

with the factors being the market portfolio and the benchmark. Basak and Pavlova (2013) assume

a dynamic setting where some investors have preferences over wealth and a benchmark. Demand

by these investors raises the prices of the assets included in the benchmark and makes them more

volatile and more correlated with each other. In both papers benchmarks are introduced directly

into investors’ utility functions.

Cuoco and Kaniel (2011) model delegation and contracts explicitly, in a dynamic setting with

two risky assets. Investors delegate the management of the risky part of their portfolio to managers,

whose fee is a piece-wise affine function of absolute return and of the return relative to a benchmark.

Managers’ demand raises the prices of the assets included in the benchmark, but the effect on

volatility depends on the convexity of the managers’ fee. Affine fees are not optimal because

investors cannot commit to an allocation in the fund when choosing the fee function. Malamud

and Petrov (2014) and Qiu (2014) assume static settings where managers observe private signals

about the payoff of a single risky asset. The former paper shows that convexity of the manager’s fee

reduces volatility, and the socially optimal fee provides managers with weaker incentives than the

3Other papers in the literature focus on fund flows, e.g., Shleifer and Vishny (1997), Berk and Green (2004),
Vayanos (2004), He and Krishnamurthy (2012, 2013), Kaniel and Kondor (2013), and Vayanos and Woolley (2013),
and on managers’ reputation concerns, e.g., Dasgupta and Prat (2008), Dasgupta, Prat, and Verardo (2011), and
Guerrieri and Kondor (2012).
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privately optimal fee. The latter paper shows that paying managers on performance relative to their

peers can induce them to trade less aggressively on their signals, resulting in less informative prices.

Relative to these papers, we assume that managers are symmetrically informed and contracts are

linear, but we allow for a general number of risky assets. This sharpens the analysis of cross-

sectional asset pricing, and indeed we derive new implications for the risk-return relationship and

the pricing of the aggregate market.4

One explanation of the negative relationship between risk and return is based on leverage (Black

(1972), Frazzini and Pedersen (2014)). Stocks with high CAPM beta have the same systematic

risk as a suitably levered portfolio of low-beta assets, but the latter portfolio is not available to

leverage-constrained investors. The demand by these investors pushes up the prices of high-beta

assets, and lowers their expected return. Another explanation is based on disagreement (Hong and

Sraer (2013)). Investors’ disagreement about the future return of the aggregate market is larger for

high-beta assets because they are more sensitive to market movements. Moreover, assets for which

disagreement is larger are priced only by optimists and hence offer low expected returns because

short-sale constraints drive pessimists out of the market.5

Karceski (2002) explains the negative risk-return relationship based on fund managers’ incen-

tives. If fund flows are more sensitive to performance when the market goes up, then managers

prefer high-beta assets because they outperform the market during good times. Baker, Bradley,

and Wurgler (2011) suggest an explanation that is based on benchmarking. Fund managers view

high- and low-beta assets as equally risky because they care about deviations from a benchmark

and not about absolute returns. Therefore, the expected return of high-beta assets does not reflect

their underlying risk and is too low. Leverage constraints are implicit in both explanations because

managers cannot replace high-beta assets by a suitably levered portfolio of low-beta assets.

Our explanation assumes no leverage constraints or disagreement. Moreover, unlike the previous

explanations, we do not show that exogenous differences in betas yield overpricing, but rather that

high investor demand yields both overpricing and high beta. We also can generate a negative

relationship not only between beta and CAPM alpha (expected return adjusted for beta), but

also between beta and expected return. By contrast, the negative relationship that the leverage

explanation generates is only between beta and alpha: for leverage-constrained investors to prefer

4A number of papers study the choice of contracts taking prices as given. Stoughton (1993) shows that when
faced with steeper performance incentives, fund managers choose less risky portfolios, and their incentives to collect
information on asset payoffs remain unchanged. Admati and Pfleiderer (1997) rely on this observation to show that
benchmarking distorts managers’ portfolio choice without encouraging them to collect more information. Both results
are shown for affine contracts. Ou-Yang (2003) shows that affine contracts and benchmarking can be optimal when
moral hazard pertains to other activities than information collection. Bhattacharya and Pfleiderer (1985), Starks
(1987), Stoughton (1993), Das and Sundaram (2002), Palomino and Prat (2003), Li and Tiwari (2009), and Dybvig,
Farnsworth, and Carpenter (2010) study non-affine contracts and whether they can dominate affine ones.

5Cohen, Polk, and Vuolteenaho (2005) find a negative relationship between risk and return during times of high
inflation, and relate this result to money illusion.

5



high-beta assets, the relationship between beta and expected return must be positive.

2 Model

2.1 Assets

Time t is continuous and goes from zero to infinity. There is an exogenous riskless rate r, and N

risky assets. The price Sit of asset i = 1, .., N is determined endogenously in equilibrium. The

dividend flow Dit of asset i is given by

Dit = bist + eit, (2.1)

where st is a component common to all assets and eit is a component specific to asset i. The variables

(st, e1t, .., eNt) are positive and mutually independent, and we specify their stochastic evolution

below. The constant bi ≥ 0 measures the exposure of asset i to the common component st. We set

Dt ≡ (D1t, .., DNt)
′, St ≡ (S1t, .., SNt)

′, and b ≡ (b1, .., bN )′. We denote by dRt ≡ (dR1t, .., dRNt)
′

the vector of assets’ returns per share in excess of the riskless rate:

dRt ≡ Dtdt+ dSt − rStdt. (2.2)

Dividing dRit by the price Sit of asset i yields asset i’s return per dollar in excess of the riskless rate.

For simplicity, we refer to dRit and dRit
Sit

as share return and dollar return, respectively, omitting

that they are in excess of the riskless rate. Asset i is in supply of ηi > 0 shares. We denote the

market portfolio by η ≡ (η1, .., ηN ), and refer to it as the index.

The variables (st, e1t, .., eNt) evolve according to square-root processes:

dst = κ (s̄− st) dt+ σs
√
stdwst, (2.3)

deit = κ (ēi − eit) dt+ σi
√
eitdwit, (2.4)

where (κ, s̄, ē1, .., ēN , σs, σ1, .., σN ) are positive constants, and the Brownian motions (wst, w1t, .., wNt)

are mutually independent. The square-root specification (2.3) and (2.4) allows for closed-form so-

lutions, while also ensuring that dividends remain positive. An additional property of this speci-

fication is that the volatility of dividends per share (i.e., of Dit) increases with the dividend level.

This property is realistic and key for our results.

The constants (s̄, ē1, .., ēN ) are the unconditional (long-term) means of the variables (st, e1t, .., eNt).

The increments (dst, de1t, .., deNt) of these variables have variance rates (σ2
sst, σ

2
1e1t, .., σ

2
NeNt) con-
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ditionally and (σ2
s s̄, σ

2
1 ē1, .., σ

2
N ēN ) unconditionally. We occasionally consider the special case of

“scale invariance,” where the ratio of unconditional standard deviation to unconditional mean is

identical across the N + 1 processes. This occurs when the vector (σ2
s , σ

2
1, .., σ

2
N ) is collinear with

(s̄, ē1, .., ēN ).

2.2 Agents

The main agents in our model are an investor and a fund manager. Both agents are price-takers

and can be interpreted as a continuum of identical investors and managers. The investor can invest

in the risky assets directly by holding the index, or indirectly by holding a fund run by a manager.

Employing the manager is the only way for the investor to hold a portfolio that differs from the

index, and hence to “participate” in the markets for the individual risky assets. One interpretation

of this participation friction is that the investor cannot identify assets that offer higher returns than

the index, and hence must employ the manager for non-index investing.

If the investor and the manager were the only agents in the model, then the participation friction

would not matter. This is because the index is the market portfolio, so equilibrium prices would

adjust to make that portfolio optimal for the investor. For the participation friction to matter, the

manager must add value over the index. To ensure that this can happen, we introduce a third set

of agents, buy-and-hold investors, who do not hold the index. These agents could be holding assets

for hedging purposes, or could be additional unmodeled fund managers. We denote their aggregate

portfolio by η− θ, and assume that θ ≡ (θ1, .., θN ) is constant over time and not proportional to η.

The number of shares of asset i available to the investor and the manager is thus θi, and represents

the residual supply of asset i to them. Assets in large residual supply (large θi) must earn high

expected returns in equilibrium, so that the manager is willing to give them weight larger than the

index weight. Conversely, assets in small residual supply must earn low expected returns so that

the manager is willing to underweight them. By overweighting high-expected-return assets and

underweighting low-expected-return ones, the manager adds value over the index. We assume that

the residual supply of each asset is positive (θi > 0 for all i). We refer to residual supply simply as

supply from now on.6

The investor chooses an investment x in the index η, i.e., holds xηi shares of asset i. She also

decides whether or not to employ the manager. Both decisions are made once and for all at t = 0.

If the manager is employed by the investor, then he chooses the fund’s portfolio zt ≡ (z1t, .., zNt) at

each time t, where zit denotes the number of shares of asset i held by the fund. The manager can

also undertake a “shirking” action mt ≥ 0 that delivers to him a private benefit
(
Amt − B

2 m
2
t

)
dt,

6An alternative interpretation of our setting is that there are no buy-and-hold investors, θ is the market portfolio,
and η is an index that differs from the market portfolio, e.g., does not include private equity.
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where 1 ≥ A ≥ 0 and B ≥ 0, and reduces the fund’s return by mtdt. A literal interpretation of mt

is as cash diverted from the fund, with diversion involving a deadweight cost except when A = 1

and B = 0. Alternatively, mt could be interpreted in reduced form as insufficient effort to lower

operating costs or to identify a more efficient portfolio. When A = 0, the private benefit is non-

positive for all values of mt and there are no agency frictions. The investor can influence the choices

of zt and mt through a compensation contract that she offers to the manager at t = 0. (Assuming

that the manager offers the contract to the investor would not change our analysis, provided that

competition drives the manager’s utility to his outside option of not being employed.) The contract

specifies a fee that the investor pays to the manager over time. It is chosen optimally within a

parametrized class, described as follows. The fee is paid as a flow, and the flow fee dft is an affine

function of the fund’s return ztdRt −mtdt and the index return ηdRt. Moreover, the coefficients

of this affine function are chosen at t = 0 and remain constant over time. Thus, the flow fee dft is

given by

dft = φ (ztdRt −mtdt)− χηdRt + ψdt, (2.5)

where (φ, χ, ψ) are constants. The constant φ is the fee’s sensitivity to the fund’s performance, and

the constant χ is the sensitivity to the index performance. We assume that the manager invests

his personal wealth in the riskless rate. This is without loss of generality: since the manager is

exposed to the risky assets through the fee, and can adjust this exposure by changing the fund’s

portfolio, a personal investment in those assets is redundant. If the manager is not employed by

the investor, then he chooses a personal portfolio z̄t in the risky assets, receives no fee, and has no

shirking action available.7

Our setting, in which one investor contracts with one manager, fits best institutional asset

management, whereby large institutions such as pension funds or sovereign-wealth funds contract

with asset management firms on a target return relative to a benchmark. Yet, we abstract away from

a number of real-world features. For example, fees typically depend on assets under management,

but we assume that they can only depend on the return achieved by the manager and on the return

of the benchmark. Moreover, fees in some cases are convex, but we restrict them to be linear. We

also abstract away from implicit incentives generated by fund flows that depend on past returns.

Our intention is to capture in a simple manner two key features of asset management contracts:

managers’ fees depend on their performance, and performance is evaluated relative to a benchmark.

These features are present not only in institutional asset management, but in other forms of asset

management as well, such as mutual funds offered to retail investors.

7Ruling out the shirking action for an unemployed manager is without loss of generality: since the manager invests
his personal wealth, he would not undertake the shirking action even if that action were available.
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2.2.1 Manager’s Optimization Problem

The manager derives utility over intertemporal consumption. Utility is exponential:

E
[∫ ∞

0
− exp(−ρ̄c̄t − δ̄t)dt

]
, (2.6)

where ρ̄ is the coefficient of absolute risk aversion, c̄t is consumption, and δ̄ is the discount rate.

We denote the manager’s wealth by W̄t.

The manager decides at t = 0 whether or not to accept the contract offered by the investor. If

the manager accepts the contract and is hence employed by the investor, then he chooses at each

time t the fund’s portfolio zt and the shirking action mt. His budget constraint is

dW̄t = rW̄tdt+ dft +

(
Amt −

B

2
m2
t

)
dt− c̄tdt, (2.7)

where the first term is the riskless return, the second term is the fee paid by the investor, the third

term is the private benefit from shirking, and the fourth term is consumption. The manager’s opti-

mization problem is to choose controls (c̄t, zt,mt) to maximize the expected utility (2.6) subject to

the budget constraint (2.7) and the fee (2.5). We denote by zt(φ, χ, ψ) and mt(φ, χ, ψ) the manager’s

optimal choices of zt and mt, and by V̄ (W̄t, st, et) his value function, where et ≡ (e1t, .., eNt)
′.

If the manager is not employed by the investor, then he chooses his personal portfolio z̄t. His

budget constraint is

dW̄t = rW̄tdt+ z̄tdRt − c̄tdt. (2.8)

The manager’s optimization problem is to choose controls (c̄t, z̄t) to maximize (2.6) subject to (2.8).

We denote by V̄u(W̄t, st, et) his value function. The manager accepts the contract offered by the

investor if

V̄ (W̄0, s0, e0) > V̄u(W̄0, s0, e0). (2.9)

2.2.2 Investor’s Optimization Problem

The investor derives utility over intertemporal consumption. Utility is exponential:

E
[∫ ∞

0
− exp(−ρct − δt)dt

]
, (2.10)

where ρ is the coefficient of absolute risk aversion, ct is consumption, and δ is the discount rate.
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The investor chooses an investment x in the index η, and whether or not to employ the manager.

Both decisions are made at t = 0. If the investor employs the manager, then she offers him a contract

(φ, χ, ψ). We denote the investor’s wealth by Wt. The investor’s budget constraint is

dWt = rWtdt+ xηdRt + ztdRt −mtdt− dft − ctdt, (2.11)

where the first term is the riskless return, the second term is the return from the investment in

the index, the third and fourth term are the return from the fund, the fifth term is the fee paid to

the manager, and the sixth term is consumption. The investor’s optimization problem is to choose

controls (ct, x, φ, χ, ψ) to maximize the expected utility (2.10) subject to the budget constraint

(2.11), the fee (2.5), the manager’s incentive compatibility constraint

zt = zt(φ, χ, ψ),

mt = mt(φ, χ, ψ),

and the manager’s individual rationality constraint (2.9). We denote by V (Wt, st, et) the investor’s

value function.

If the investor does not employ the manager, then her budget constraint is

dWt = rWtdt+ xηdRt − ctdt. (2.12)

The investor’s optimization problem is to choose controls (ct, x) to maximize (2.10) subject to

(2.12). We denote by Vu(Wt, st, et) her value function. The investor employs the manager if

V (W0, s0, e0) > Vu(W0, s0, e0). (2.13)

2.3 Equilibrium Concept

We look for equilibria in which the investor employs the manager, i.e., offers a contract that the

manager accepts. These equilibria are described by a price process St, a compensation contract

(φ, χ, ψ) that the investor offers to the manager, and a direct investment x in the index by the

investor.

Definition 1 (Equilibrium prices and contract). A price process St, a contract (φ, χ, ψ), and

an index investment x, form an equilibrium if:

(i) Given St and (φ, χ, ψ), zt = θ − xη solves the manager’s optimization problem.
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(ii) Given St, the investor chooses to employ the manager, and (x, φ, χ, ψ) solve the investor’s

optimization problem.

The equilibrium in Definition 1 involves a two-way feedback between prices and contracts. A

contract offered by the investor affects the manager’s portfolio choice, and hence equilibrium prices.

Equilibrium prices are determined by the market-clearing condition that the fund’s portfolio zt plus

the portfolio xη that the investor holds directly add up to the supply portfolio θ. Conversely, the

contract that the investor offers to the manager depends on the equilibrium prices. We conjecture

that the equilibrium price of asset i is an affine function of st and eit:

Sit = a0i + a1ist + a2ieit, (2.14)

where (a0i, a1i, a2i) are constants.

3 Equilibrium without Agency Frictions

In this section we solve for equilibrium in the absence of agency frictions. We eliminate agency

frictions by setting the parameter A in the manager’s private-benefit function Amt− B
2 m

2
t to zero.

This ensures that the private benefit is non-positive for all values of mt. When A = 0, the investor

and the manager share risk optimally, through the contract. The equilibrium becomes one with

a representative agent, whose risk tolerance is the sum of the investor’s and the manager’s. We

compute prices in that equilibrium in closed form. We show that the combination of exponential

utility and square-root dividend processes—which to our knowledge is new to the literature—yields

a framework that is not only tractable but can also help address empirical puzzles about the risk-

return relationship.

Theorem 3.1 (Equilibrium Prices and Contract without Agency Frictions). When A = 0,

the following form an equilibrium: the price process St given by (2.14) with

a0i =
κ

r
(a1is̄+ a2iēi) , (3.1)

a1i =
bi√

(r + κ)2 + 2r ρρ̄
ρ+ρ̄θbσ

2
s

≡ a1bi, (3.2)

a2i =
1√

(r + κ)2 + 2r ρρ̄
ρ+ρ̄θiσ

2
i

; (3.3)

the contract (φ, χ, ψ) =
(

ρ
ρ+ρ̄ , 0, 0

)
; and the index investment x = 0.
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Since x = 0, the investor does not invest directly in the index. Market-clearing hence implies

that the fund holds the supply portfolio θ. Since, in addition, χ = 0, the manager is compensated

based only on absolute performance and not on performance relative to the index. Therefore,

the manager receives a fraction φ = ρ
ρ+ρ̄ of the return of the supply portfolio, and the investor

receives the complementary fraction 1−φ = ρ̄
ρ+ρ̄ . This coincides with the standard rule for optimal

risk-sharing under exponential utility.

The coefficient a2i measures the sensitivity of asset i’s price to changes in the asset-specific

component eit of dividends. A unit increase in eit causes asset i’s dividend flow at time t to

increase by one. In the absence of risk aversion (ρρ̄ = 0), (3.3) implies that the price of asset i

would increase by a2i = 1
r+κ . This is the present value, discounted at the riskless rate r, of the

increase in asset i’s expected dividends from time t onwards: the dividend flow at time t increases

by one, and the effect decays over time at rate κ.

The coefficient a1i measures the sensitivity of asset i’s price to changes in the common compo-

nent st of dividends. We normalize a1i by bi, the sensitivity of asset i’s dividend flow to changes

in st. This yields a coefficient a1 that is common to all assets, and that measures the sensitivity

of any given asset’s price to a unit increase in the asset’s dividend flow at time t caused by an

increase in st. In the absence of risk aversion, (3.2) implies that the price of asset i would increase

by a1 = 1
r+κ . Hence, a1 and a2i would be equal: an increase in an asset’s dividend flow would have

the same effect on the asset’s price regardless of whether it comes from the common or from the

asset-specific component.

Risk aversion lowers a1 and a2i. This is because increases in st or eit not only raise expected

dividends but also make them riskier, and risk has a negative effect on prices when agents are risk

averse. The effect of increased risk attenuates that of higher expected dividends. One would expect

the attenuation to be larger when the increased risk comes from increases in st rather than in eit.

This is because agents are more averse to risk that affects all assets rather than a specific asset.

Equations (3.2) and (3.3) imply that a1 < a2i if

θbσ2
s =

(
N∑
i=1

θibi

)
σ2
s > θiσ

2
i . (3.4)

Equation (3.4) evaluates how a unit increase in asset i’s dividend flow at time t affects the covariance

between the dividend flow of asset i and of the supply portfolio. This covariance captures the

relevant risk in our model. The left-hand side of the inequality in (3.4) is the increase in the

covariance when the increase in dividend flow is caused by an increase in st. The right-hand side

is the increase in the same covariance when the increase in dividend flow is caused by an increase

in eit. When (3.4) holds, the change in st has a larger effect on the covariance compared to the
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change in eit. Therefore, it has a larger attenuating effect on the price.

Equation (3.4) holds when the number N of assets exceeds a threshold, which can be zero. This

is because the left-hand side increases when assets are added, while the right-hand side remains

constant. In the special case of scale invariance, (3.4) takes the intuitive form

θbs̄ > θiēi. (3.5)

The left-hand side is the dividend flow of the supply portfolio that is derived from the common

component. The right-hand side is the dividend flow of the same portfolio that is derived from the

component specific to asset i. Equation (3.5) obviously holds when N is large enough.

3.1 Supply Effects

We next examine how differences in supply in the cross-section of assets are reflected into prices

and return moments. We compare two assets i and i′ that differ only in supply (θi 6= θi′), but have

otherwise identical characteristics ((bi, ēi, σi, ηi) = (bi′ , ēi′ , σi′ , ηi′)). When comparing the prices of

the assets at a time t, we assume that the asset-specific components of dividends at t are also

identical (eit = ei′t). We take asset i to be the one in smaller supply (θi < θi′).

We compute unconditional (long-term) moments of returns, and consider both returns per share

and returns per dollar invested. Moments of share returns can be computed in closed form. To

compute closed-form solutions for moments of dollar returns, we approximate the dollar return of

an asset by its share return divided by the unconditional mean of the share price. For example,

expected dollar return is the expected ratio of share return to share price but we approximate it

by the ratio of expected share return to expected share price.

Proposition 3.1 (Price and Expected Return). Suppose that A = 0. An asset i in smaller

supply than an otherwise identical asset i′ has higher price at time t (Sit > Si′t), higher expected

price (E(Sit) > E(Si′t)), lower expected share return (E(dRit) < E(dRi′t)), and lower expected dollar

return (E
(
dRit
E(Sit)

)
< E

(
dRi′t
E(Si′t)

)
).

An asset i in small supply θi must offer low expected share return, so that the manager is

induced to hold a small number of shares of the asset. Therefore, the asset’s price must be high.

The asset’s expected dollar return is low because of two effects working in the same direction: low

expected share return in the numerator, and high price in the denominator.

The effect of θi on the asset price is through the coefficient a2i, which measures the price
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sensitivity to changes in the asset-specific component eit of dividends. When θi is small, an increase

in eit is accompanied by a small increase in the covariance between the dividend flow of the asset

and of the supply portfolio θ. Therefore, the positive effect that the increase in eit has on the price

through higher expected dividends is attenuated by a small negative effect due to the increase in

risk. As a consequence, a2i is large. Since an increase in eit away from its lower bound of zero has

a large effect on the price, the price is high.

Note that θi does not have an effect through the coefficient a1i, which measures the price

sensitivity to changes in the common component st of dividends. This coefficient depends on θi

only through the aggregate quantity θb, which is constant in cross-sectional comparisons.

Proposition 3.2 (Return Volatility). Suppose that A = 0. An asset i in smaller supply than

an otherwise identical asset i′ has higher share return variance (Var(dRit) > Var(dRi′t)). It has

higher dollar return variance (Var
(
dRit
E(Sit)

)
> Var

(
dRi′t
E(Si′t)

)
) if and only if

D1 ≡ a1bi(a2i + a2i′)(σ
2
i s̄− σ2

s ēi) + 2(a2ia2i′σ
2
i ēi − a2

1b
2
iσ

2
s s̄) > 0. (3.6)

Since dividend changes have a large effect on the price of an asset that is in small supply, such

an asset has high share return volatility (square root of variance). This effect is concentrated on

the part of volatility that is driven by the asset-specific component, while there is no effect on the

part that is driven by the common component. Whether small supply is associated with high or

low dollar return volatility depends on two effects working in opposite directions: high share return

volatility in the numerator, and high price in the denominator. The first effect dominates when

(3.6) holds.

Since the effect of supply on volatility is concentrated on the part that is driven by the asset-

specific component, (3.6) should hold if that part is large enough. This can be confirmed, for

example, in the case of scale invariance. Equation (3.6) becomes

√
a2ia2i′ ēi > a1bis̄, (3.7)

and has the simple interpretation that the volatility driven by the common component is smaller

than the geometric average, across assets i and i′, of the volatilities driven by the asset-specific

components. Indeed, the conditional variance rate driven by the common component is a2
1b

2
iσ

2
sst

for both assets. The conditional variance rate driven by the asset-specific component is a2
2iσ

2
i eit

for asset i and a2
2i′σ

2
i eit for asset i′. Taking expectations, we find the unconditional variance rates

a2
1b

2
iσ

2
s s̄, a

2
2iσ

2
i ēi, and a2

2i′σ
2
i ēi, respectively. Under scale invariance, the former is smaller than the

geometric average of the latter if (3.7) holds.
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We next examine how supply affects the systematic and idiosyncratic parts of volatility. When

the number N of assets is large, these coincide, respectively, with the parts driven by the common

and the asset-specific component. For small N , however, the systematic part includes volatility

driven by the asset-specific component. To compute the systematic and idiosyncratic parts, we

regress the return dRit of asset i on the return dRηt ≡ ηdRt of the index:

dRit = βidRηt + dεit. (3.8)

The CAPM beta of asset i is

βi =
Cov(dRit, dRηt)

Var(dRηt)
, (3.9)

and measures the systematic part of volatility. The variance Var(dεit) of the regression residual

measures the idiosyncratic part. These quantities are defined in per-share terms. Their per-dollar

counterparts are

β$
i =

Cov
(
dRit
E(Sit)

,
dRηt
E(Sηt)

)
Var

(
dRηt
E(Sηt)

) (3.10)

and Var
(

dεit
E(Sit)

)
, where Sηt ≡ ηSt denotes the price of the index.

Proposition 3.3 (Beta and Idiosyncratic Volatility). Suppose that A = 0. An asset i in

smaller supply than an otherwise identical asset i′ has higher share beta (βi > βi′) and idiosyncratic

share return variance (Var(dεit) > Var(dεi′t)). It has higher dollar beta (β$
i > β$

i′) if and only if

D2 ≡ a1bi(a2i + a2i′)ηiσ
2
i s̄+ a2ia2i′ηiσ

2
i ēi − a2

1biηbσ
2
s s̄ > 0, (3.11)

and higher idiosyncratic dollar return variance (Var
(

dεit
E(Sit)

)
> Var

(
dεi′t

E(Si′t)

)
) if and only if

a2
1(ηb)2σ2

s s̄+
N∑
j=1

a2
2jη

2
jσ

2
j ēj

 a1bis̄D1

−
[(
a2

1biηbσ
2
s s̄+ a2

2iηiσ
2
i ēi
)

(a1bis̄+ a2i′ ēi) +
(
a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi
)

(a1bis̄+ a2iēi)
]
D2 > 0.

(3.12)

The share beta and idiosyncratic volatility are large for an asset that is in small supply because of

the effect identified in Propositions 3.1 and 3.2: changes to the asset-specific component of dividends

have a large effect on the price of such an asset. This yields high idiosyncratic volatility. It also
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yields large beta because asset-specific shocks have a large contribution to the asset’s covariance

with the index. Whether small supply is associated with high or low dollar beta and idiosyncratic

volatility depends on two effects working in opposite directions: high share beta and idiosyncratic

volatility in the numerator, and high price in the denominator. To build intuition on which effect

dominates, we consider the case where the number N of assets is large.

For large N , an asset’s covariance with the index is driven mainly by the common shocks,

whose effect on price does not depend on supply. Since supply affects only a small fraction of the

covariance, the effect of supply on price should dominate that on share beta. Hence, dollar beta

should be small for an asset that is in small supply. This can be confirmed, for example, in the

case of scale invariance and symmetric assets with identical characteristics (bi, ēi, ηi, θi). (To ensure

that assets i and i′ differ in their supply, we assume that θi − θi′ is close but not equal to zero.)

We denote by (bc, ēc, ηc, θc) the common values of (bi, ēi, ηi, θi) across all assets, by a2c the common

value of a2i, and by y ≡ a2cēc
a1bcs̄

the ratio of volatility driven by the asset-specific component to the

volatility driven by the common component. We can write (3.11) as

2y + y2 −N > 0. (3.13)

As N increases, (3.13) is satisfied for values of y that exceed an increasingly large threshold.

An asset’s idiosyncratic volatility, for large N , is driven mainly by the shocks specific to that

asset. Since the effect of supply is only through those shocks, while common shocks account for a

potentially large fraction of the price, the effect of supply on idiosyncratic share volatility should

dominate the effect of supply on price. Hence, idiosyncratic dollar return volatility should be large

for an asset that is in small supply. For example, in the case of scale invariance and symmetric

assets, we can write (3.12) as

N − 2− y > 0. (3.14)

As N increases, (3.14) is satisfied for values of y that are below an increasingly large threshold.

To relate the effects of supply derived in Propositions 3.2 and 3.3 to cross-sectional market

anomalies, we next determine how supply affects assets’ CAPM alphas, i.e., the expected returns

that assets are earning in excess of the CAPM. The CAPM alpha of asset i is

αi = E(dRit)− βiE(dRηt), (3.15)
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in per-share terms. Its per-dollar counterpart is

α$
i = E

(
dRit
E(Sit)

)
− β$

i E
(
dRηt
E(Sηt)

)
=

αi
E(Sit)

. (3.16)

Proposition 3.4 (Alpha). Suppose that A = 0. An asset i in smaller supply than an otherwise

identical asset i′ has lower share alpha (αi < αi′) and lower dollar alpha (α$
i < α$

i′).

An asset in small supply has low share alpha because it has low expected share return (Proposi-

tion 3.1) and high share beta (Proposition 3.3). The effect of supply on share alpha carries through

to dollar alpha, so an asset in small supply has low dollar alpha as well.

Our results have implications for the relationship between risk and expected return in the

cross-section of assets. Standard theories predict that this relationship should be positive: riskier

assets should compensate investors with higher expected return. Empirically, however, a negative

relationship has often been documented. Moreover, in those instances where a positive relationship

has been documented, it has been found to be weaker than the theoretical one. The weakness of

the relationship has been shown using alpha, which is expected return in excess of its theoretical

value. Alpha has been shown to be negative for riskier assets and positive for less risky ones. This

means that the expected returns of the former assets are not as high as predicted by theory, while

the expected returns of the latter assets are not as low. The empirical findings concern both CAPM

alpha, as well as alphas computed using other risk-adjustment methods such as the Fama-French

three-factor model.

Haugen and Baker (1996) and Ang, Hodrick, Xing, and Zhang (2006) document that U.S. stocks

with high return volatility earn lower returns on average than stocks with low volatility. The latter

paper also shows that the negative relationship holds not only for return volatility but also for the

idiosyncratic component of that volatility. Since a negative relationship holds between volatility

and expected return, it also holds between volatility and alpha: adjusting for risk can only make

the negative relationship stronger. Since alpha averages to zero across stocks, high-volatility stocks

earn negative alpha and low-volatility stocks earn positive alpha. The negative relationship between

volatility on one hand and expected return or alpha on the other is known as the volatility anomaly.

Black (1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) document

that U.S. stocks with high CAPM beta earn negative alpha while stocks with low beta earn positive

alpha. The relationship between expected return and beta is almost flat during 1926-2012 (Frazzini

and Pedersen (2014)), and turns negative during the second half of the sample (Baker, Bradley,

and Wurgler (2011)). The negative relationship between beta and alpha, as well as the weak or

negative relationship between beta and expected return, is known as the beta anomaly.
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The results in this section suggest a mechanism that could help explain the volatility and beta

anomalies, even in the absence of agency frictions. A negative relationship between volatility or beta

on one hand, and expected return or alpha on the other, can be generated by the way that these

variables depend on supply. Assets in small supply earn low expected dollar return (Proposition

3.1) and negative alpha (Proposition 3.4). Under some conditions, they also have high dollar return

volatility (Proposition 3.2), high idiosyncratic dollar return volatility (Proposition 3.3), and high

dollar beta (Proposition 3.3). Under these conditions our model can generate a negative relationship

both between risk and alpha, as well as between risk and expected return. We further explore the

relationship between risk and return implied by our model in the next section, where we add agency

frictions and quantify the effects in the context of a numerical example.

4 Equilibrium with Agency Frictions

In this section we solve for equilibrium in the presence of agency frictions. We introduce agency

frictions by setting the parameter A in the manager’s private-benefit function Amt − B
2 m

2
t to a

positive value. For simplicity, we set the parameter B to zero. This pins down immediately the

coefficient φ that characterizes how sensitive the manager’s fee is to the fund’s performance. Indeed,

if φ < A, then the manager will choose an arbitrarily large shirking action mt. This forces the

investor to offer φ ≥ A, in which case there is no shirking, i.e., mt = 0.8 When A ≤ ρ
ρ+ρ̄ , the

constraint φ ≥ A is not binding, since in the equilibrium without agency frictions the investor

offers φ = ρ
ρ+ρ̄ . When instead A > ρ

ρ+ρ̄ , the constraint is binding, and the investor offers φ = A.

Allowing B to be positive yields a richer theory of contract determination, both on the positive

and on the normative front. The asset pricing results, however, remain essentially the same. For this

reason we defer the case B > 0 to Section 5, where we perform a normative analysis of contracts.

Theorem 4.1 (Equilibrium Prices and Contract with Agency Frictions). Suppose that

B = 0. When ρ
ρ+ρ̄ ≥ A > 0, the equilibrium in Theorem 3.1 remains an equilibrium. When

A > ρ
ρ+ρ̄ , the following form an equilibrium: the price process St given by (2.14) with a0i given by

(3.1),

a1i =
bi√

(r + κ)2 + 2rρ̄(φθ − χη)bσ2
s

≡ a1bi, (4.1)

a2i =
1√

(r + κ)2 + 2rρ̄(φθi − χηi)σ2
i

; (4.2)

8For φ = A, the manager is indifferent between all values of mt. We assume that he chooses mt = 0, as would be
the case for any positive value of B, even arbitrarily small.

18



the contract (φ, χ, ψ) with φ = A, ψ = 0, and χ > 0 being the unique solution to

(a1 − ǎ1) ηbŝ0 +

N∑
i=1

(a2i − ǎ2i) ηiêi0 = 0, (4.3)

where

ǎ1 ≡
1√

(r + κ)2 + 2rρ[(1− φ)θ + χη]bσ2
s

, (4.4)

ǎ2i ≡
1√

(r + κ)2 + 2rρ[(1− φ)θi + χηi]σ2
i

, (4.5)

ŝt ≡ st + κ
r s̄, and êit ≡ eit + κ

r ēi; and the index investment x = 0.

When A > ρ
ρ+ρ̄ , the investor renders the manager’s fee more sensitive to the fund’s performance

compared to the equilibrium without agency frictions (φ = A > ρ
ρ+ρ̄). This exposes the manager

to more risk, but eliminates his incentive to undertake the shirking action mt. If the increase in φ

were the only change in the contract, then the manager would respond by scaling down the fund’s

holdings of the risky assets and investing more in the riskless rate. This would offset the increase in

his personal risk exposure caused by the larger φ. The investor restores the manager’s incentives to

take risk by making the fee sensitive to the index performance (χ > 0). This induces the manager

to scale up the fund’s holdings of the risky assets because his personal exposure to market drops

becomes smaller. The increase in the risky-asset holdings, however, is according to the weights in

the index η and not those in the supply portfolio θ. The fund’s portfolio thus changes in response

to the increases in φ and χ, and becomes closer to the index. This causes equilibrium prices to

change, as we show in Section 4.1. The investor does not invest directly in the index (x = 0)

because she can control the fund’s index exposure by changing χ.

The compensation that the manager receives for performance relative to the index is analo-

gous to relative-performance evaluation in models of optimal contracting under moral hazard (e.g.,

Holmstrom 1979). The mechanism is somewhat different, however. In typical moral-hazard models,

relative-performance evaluation is used to insulate the agent from risk that he cannot control. In

our model, instead, the agent can control his risk exposure through his choice of the fund’s portfolio.

Compensation based on relative performance is instead used to induce the agent to take risk.

Equations (4.1) and (4.2) show how the contract parameters (φ, χ) affect equilibrium prices.

Prices are determined by the covariance with the portfolio φθ − χη. This is the portfolio that

describes the manager’s personal risk exposure: the fee is φ times the fund’s return, which in

equilibrium is the return of the supply portfolio θ, minus χ times the return of the index portfolio
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η. The covariance is multiplied by the manager’s risk aversion coefficient ρ̄. Prices are determined

by the manager’s risk aversion and risk exposure because the manager is marginal in pricing the

assets. We examine the properties of prices in Sections 4.1 and 4.2.

Equation (4.3), which characterizes the the contract parameter χ, can be given an intuitive

interpretation. The quantity Si0 = a1biŝ0 +
∑N

i=1 a2iêi0 is the price of asset i at time zero. We can

also construct the counterpart Ši0 ≡ ǎ1biŝ0 +
∑N

i=1 ǎ2iêi0 of this expression for the coefficients ǎ1

and ǎ2i defined in (4.4) and (4.5). This is the hypothetical price of asset i at time zero under the

assumption that the asset is priced from the investor instead of the manager. The price Ši0 can

be derived from Si0 by replacing the manager’s risk exposure φθ − χη by the investor’s exposure

(1−φ)θ+χη, and the manager’s risk-aversion coefficient ρ̄ by the investor’s coefficient ρ. Equation

(4.3) states that the investor and the manager agree on their valuation of the index: ηŠ0 = ηS0.

This is because the investor can invest directly in the index, and hence is marginal in pricing

the index. The investor and the manager can disagree on their valuation of other portfolios. In

particular, and as we show in the proof of Theorem 4.1, the investor values the supply portfolio

more than the manager: θŠ0 > θS0. The investor could acquire more of the supply portfolio by

lowering φ, but this would incentivize the manager to undertake the shirking action mt. Proposition

4.1 summarizes how the contract parameters (φ, χ) depend on agency frictions, as measured by the

private-benefit parameter A.

Proposition 4.1 (Effect of Agency Frictions on Manager’s Contract). Suppose that A >
ρ
ρ+ρ̄ and B = 0. Following an increase in the private-benefit parameter A, the manager’s fee becomes

more sensitive to the fund’s performance ( ∂φ∂A > 0) and to the index performance ( ∂χ∂A > 0).

4.1 Cross-Sectional Pricing and Amplification

We next examine how agency frictions, as measured by the private-benefit parameter A, affect the

cross-section of asset prices and of return moments. Following an increase in A, the manager’s fee

becomes more sensitive to the fund’s performance, and performance becomes benchmarked to the

index to a larger extent. This renders the manager less willing to deviate from the index. Recall

that in equilibrium the manager deviates from the index by overweighting assets in large supply and

underweighting assets in small supply. Hence, when A increases, the prices of large-supply assets

must decrease so that the manager remains equally willing to overweight them, and the prices of

small-supply assets must increase so that the manager remains equally willing to underweight them.

Proposition 4.2 confirms these results in two simple cases of the model. First, when dividends vary

over time only because of the asset-specific component. This case can be derived by setting the

volatility parameter σs of the common component to zero. Second, when supply is the only driver
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of cross-sectional variation, i.e., the remaining characteristics (bi, ēi, σi, ηi) are common to all assets.

We denote the common values of these characteristics by (bc, ēc, σc, ηc). For simplicity, we assume

that in both cases and for the rest of Section 4 the time-zero values of the processes (st, e1t, .., eNt)

are equal to the processes’ unconditional means, i.e., (s0, e10, .., eN0) = (s̄, ē1, .., ēN ).

Proposition 4.2 (Effect of Agency Frictions on Price and Expected Return). Suppose

that A > ρ
ρ+ρ̄ and B = 0. Following an increase in the private-benefit parameter A, the following

results hold:

(i) When σs = 0, there exists a threshold γ > 0 such that the prices of assets i for which θi
ηi
> γ

decrease (∂Sit∂A < 0), and the prices of assets i for which θi
ηi
< γ increase (∂Sit∂A > 0). Both sets

of assets are non-empty.

(ii) When (bi, ēi, σi, ηi) = (bc, ēc, σc, ηc) for all i, the price of asset i = arg max j∈{1,..,N} θj de-

creases (∂Sit∂A < 0), and the expected price of asset i = arg min j∈{1,..,N} θj increases (∂E(Sit)
∂A >

0).

For assets whose prices decrease, expected returns increase, both in share (∂E(dRit)
∂A > 0) and dollar

(
∂E(

dRit
E(Sit)

)

∂A > 0) terms. Conversely, for assets whose prices increase, expected returns decrease, both

in share (∂E(dRit)
∂A < 0) and dollar (

∂E(
dRit
E(Sit)

)

∂A < 0) terms.

When the time-variation of dividends is only asset-specific, the effect of agency frictions on

prices takes a simple form. Assets are ordered according to the ratio θi
ηi

of the weight in the supply

portfolio θ relative to the index portfolio η. Assets for which the ratio exceeds a threshold γ, and are

hence overweighted by the manager, drop in price when A increases. Conversely, underweighted

assets, for which the ratio is below γ, rise. These results can also be stated in terms of the

risk premium associated to the asset-specific component, i.e., the compensation that the manager

requires for bearing the asset-specific risk. Agency frictions raise the risk premium for the assets

in large supply, and lower it for the assets in small supply.

When the time-variation of dividends has a common component in addition to the asset-specific

one, the analysis becomes more complicated. This is because agency frictions affect the risk pre-

mium associated to the common component and this effect is the same for all assets regardless

of their supply. When supply is the only driver of cross-sectional variation, agency frictions raise

the risk premium associated to the common component. Since they also raise the risk premium

associated to the asset-specific component for the large-supply assets, the prices of these assets

decrease. For the small-supply assets instead, the two effects go in opposite directions because
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the risk premium associated to the asset-specific component decreases. The prices of these assets

increase in expectation, i.e., in terms of their unconditional (long-term) means.

Proposition 4.2 implies that agency frictions exacerbate price distortions caused by supply.

Indeed, assets in large supply, which the manager overweights in equilibrium, trade at low prices

holding else equal. Agency frictions cause their prices to become even lower. Conversely, assets in

small supply, which the manager underweights, trade at high prices, and agency frictions cause their

prices to rise further. Agency frictions effectively raise the supply of assets whose supply is already

large, and lower the supply of assets whose supply is already small. Formally, in the presence of

frictions, prices are determined by the covariance with the portfolio φθ − χη that describes the

manager’s personal risk exposure. Frictions raise φ and χ in such a way that φθi − χηi increases

for large-θi assets and decreases for small-θi assets.

Agency frictions affect not only prices and expected returns, but also the volatility of returns.

Indeed, because they magnify differences in supply, they also magnify the relationship between

supply and volatility shown in Section 3.1. As shown in that section, supply is related to volatility

through an attenuation effect. Following a positive shock to an asset’s expected cashflows, the asset

accounts for a larger fraction of the manager’s portfolio volatility. The increase in volatility makes

the manager less willing to hold the asset, and attenuates the price increase caused by the improved

fundamentals. The extent of attenuation depends on the asset’s supply. If supply is large, then

attenuation is strong because the asset’s contribution to portfolio volatility is large. Therefore,

the cashflow shock has a weak effect on the asset’s price, resulting in low share return volatility.

Conversely, if supply is small, then attenuation is weak, and share return volatility is high.

The effect of agency frictions on return volatility is most striking for assets in small supply. For

these assets, the attenuation effect described in the previous paragraph can reverse sign and become

an amplification effect. Consider again a positive shock to an asset’s expected cashflows. Following

the shock, the asset accounts for a larger fraction of the manager’s portfolio volatility. The manager,

however, cares not only about the volatility of his portfolio, as is the case in the absence of agency

frictions, but also about the volatility of his deviation from the index. When the shock concerns

an asset in small supply, which the manager underweights, the latter volatility increases and it can

be reduced by buying the asset, i.e., reducing the underweight. Buying pressure by the manager

to reduce the underweight amplifies the price increase caused by the improved fundamentals and

results in high share return volatility. This is the amplification effect. Conversely, for assets in large

supply, which the manager overweights, the volatility of the manager’s deviation from the index

can be reduced by selling the asset, i.e., reducing the overweight. Hence, attenuation is stronger,

resulting in lower share return volatility. Proposition 4.3 confirms these results in the two special

cases of the model, and examines the behavior of dollar return volatility as well.
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Proposition 4.3 (Effect of Agency Frictions on Return Volatility). Suppose that A > ρ
ρ+ρ̄

and B = 0. Following an increase in the private-benefit parameter A, the following results hold:

(i) When σs = 0, the return volatility of assets i for which θi
ηi
> γ decreases, both in share

(∂Var(dRit)
∂A < 0) and dollar (

∂Var(
dRit
E(Sit)

)

∂A < 0) terms, and the return volatility of assets i for

which θi
ηi
< γ increases, both in share (∂Var(dRit)

∂A > 0) and dollar (
∂Var(

dRit
E(Sit)

)

∂A > 0) terms,

where the threshold γ > 0 is as in Proposition 4.2. Both sets of assets are non-empty.

(ii) When (bi, ēi, σi, ηi) = (bc, ēc, σc, ηc) for all i, the share return volatility of asset i = arg max j∈{1,..,N} θj

decreases (∂Var(dRit)
∂A < 0). The return volatility of asset i = arg min j∈{1,..,N} θj increases,

both in share (∂Var(dRit)
∂A > 0) and dollar (

∂Var(
dRit
E(Sit)

)

∂A > 0) terms, provided that

a2iσ
2
i > a1biσ

2
s . (4.6)

Condition (4.6) is sufficient for the share return volatility, and necessary and sufficient for

the dollar return volatility.

When the time-variation of dividends is only asset-specific, the effect of agency frictions takes

the same form as in Proposition 4.2: assets whose weight in the supply portfolio relative to the

index portfolio exceeds a threshold γ become less volatile, and assets below the threshold become

more volatile. When a time-varying common component is added, the analysis becomes more

complicated but the results have a similar flavor. Agency frictions lower the share return volatility

of assets in large supply. They also raise the share return volatility of assets in small supply,

under the sufficient condition (4.6). Moreover, (4.6) is necessary and sufficient for the dollar return

volatility of small-supply assets to increase with agency frictions. Condition (4.6) parallels (3.6),

which is necessary and sufficient for dollar return volatility to be higher for assets in small supply:

under scale invariance and i = i′, (3.6) and (4.6) become identical, and require that the volatility

driven by the asset-specific component exceeds that driven by the common component.

4.2 Aggregate Market

We next examine how agency frictions affect the valuation of the aggregate market, i.e., the index

η. Recall from Proposition 4.2 that frictions cause the prices of assets in large supply to drop and

the prices of assets in small supply to rise. The effect on the aggregate market is thus ambiguous a

priori. We show, however, that the cross-sectional differences do not cancel out, and the aggregate

market goes up. Therefore, agency frictions distort the prices of small-supply assets upwards more

than they distort the prices of large-supply assets downwards.
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The intuition for the asymmetry lies in the interaction between the manager’s risk-taking incen-

tives and the amplification effect described in Section 4.1. When agency frictions are more severe,

the manager becomes less willing to deviate from the index because he is benchmarked more tightly

on it. The manager’s deviations are to overweight assets in large supply, which earn high expected

return, and underweight assets in small supply, which earn low expected return. The latter devi-

ation becomes increasingly costly relative to the former because of the amplification effect: since

the share return volatility of small-supply assets increases, the manager is exposed to an increased

risk of deviating from the index by underweighting these assets. Therefore, when the manager is

benchmarked more tightly on the index, he becomes particularly keen to reduce the underweights.

As a consequence, the price of the underweights goes up more than the price of the overweights

goes down.

Proposition 4.4 confirms these results in two simple cases of the model. These cases parallel

those in Propositions 4.2 and 4.3, but are somewhat more restrictive. When dividends vary over

time only because of the asset-specific component, assets are assumed symmetric in terms of some

of their characteristics. And when the time-variation of dividends has also a common component,

supply is assumed to take only two values.

Proposition 4.4 (Effect of Agency Frictions on Aggregate Market). Suppose that A > ρ
ρ+ρ̄ ,

B = 0, and that one of the following conditions holds:

(i) σs = 0, and (σi, ηi) = (σc, ηc) for all i or (σi, θi) = (σc, θc) for all i.

(ii) (bi, ēi, σi, ηi) = (bc, ēc, σc, ηc) for all i, and θi can take only two values.

Following an increase in the private-benefit parameter A, the expected price of the aggregate market

increases (
∂E(Sηt)
∂A > 0), and the expected return decreases both in share (

∂E(dRηt)
∂A < 0) and dollar

(
∂E(

dRηt
E(Sηt)

)

∂A < 0) terms.

4.3 Numerical Example

We illustrate our results with a numerical example. We set the investor’s risk-aversion coefficient ρ

to one. This is a normalization because we can redefine the units of the consumption good. We set

the manager’s risk-aversion coefficient ρ̄ to 50, meaning that the manager accounts for ρ
ρ+ρ̄ = 2%

of aggregate risk tolerance. The ratio ρ
ρ+ρ̄ reflects the “size” of fund managers relative to fund

investors, and can be related to the size of the financial sector. Philippon (2008) reports that the

GDP share of the Finance and Insurance industry was 5.5% on average during 1960-2007 in the

US. Since only part of that industry concerns asset management, 5.5% can be viewed as an upper
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bound for ρ
ρ+ρ̄ . We set the riskless rate r to 4%. We set the mean-reversion parameter κ to 10%,

meaning that the half-life of dividend shocks is log(2)
0.1 = 6.93 years.

If the assets in our model are interpreted as individual stocks, then supply effects will be small.

Indeed, since there is a large number of stocks, the specific risk associated to each stock is small

relative to the aggregate risk tolerance. We interpret instead our assets as segments of the stock

market, e.g., style portfolios such as value and growth, or industry-sector portfolios. Under this

interpretation, asset-specific risk concerns market segments, and so does the demand by the buy-

and-hold investors. The volatility and beta anomalies that we show in this section are also at the

segment level. We set the number N of assets to six.

We assume that the six assets are divided into two groups, with three assets in each group.

Assets in each group have identical characteristics, except for supply. Thus, assets are identical

in terms of number of shares ηi included in the index, sensitivity bi of dividends to the dividends’

common component st, long-run mean ēi of the asset-specific component, and volatility parameter

σi of the asset-specific component. We assume that the index η includes one share of each asset

(ηi = 1 for i = 1, .., 6). This is a normalization because we can redefine one share of each asset. We

set the supply of assets 1, 2, and 3, left over by the buy-and-hold investors, to 0.7 share, and the

corresponding supply of assets 4, 5, and 6 to 0.3 share (θ1 = θ2 = θ3 = 0.7 and θ4 = θ5 = θ6 = 0.3).

We set the dividend sensitivities to one (bi = 1 for i = 1, .., 6). This is a normalization because we

can redefine st.

The remaining parameters are the long-run mean s̄ of the common component of dividends,

the long-run mean ēi of the asset-specific component, the volatility parameter σs of the common

component, and the volatility parameter σi of the asset-specific component. We determine σi as

function of (s̄, ēi, σs) by imposing scale invariance, i.e., σ
2
s
s̄ =

σ2
i
ēi

. We determine the ratio ēi
s̄ based on

the fraction of assets’ return variance that is idiosyncratic. Finally, we determine (s̄, σs) based on

the mean and the variance of the return of the aggregate market η. We set (s̄, σs) = (0.65, 1); under

these choices the market’s expected return (in excess of the riskless rate) is 5.27% in the absence of

agency frictions (A ≤ ρ
ρ+ρ̄), and the market’s return volatility is 16.6%. We also set ēi = 0.4; under

this choice idiosyncratic risk accounts for 60% of assets’ return variance in the absence of frictions.

Our results are sensitive to the size of idiosyncratic risk, as we show in Propositions 3.2, 3.3, and

4.3, and emphasize again later in this section.

Figure 1 plots the sensitivity φ of the manager’s fee to the fund’s performance and the sensitivity

χ to the index performance as a function of the private-benefit parameter A. We express the

sensitivities as percentages, and allow A to vary from zero to 0.15. Thus, under the maximum

value of A, the manager’s fee increases by fifteen cents when the fund’s assets increase by one

dollar. A sensitivity of that magnitude is typical for hedge funds; under the 2/20 contracts that
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are common in the industry, hedge-fund managers receive 20% of profits. For mutual funds, typical

fees are 0.5-2% of assets under management, but the fees’ sensitivity to returns may be significantly

higher because high returns attract inflows (an effect which is absent from our model). Figure 1

confirms the result of Proposition 4.1 that φ and χ increase in A for A > ρ
ρ+ρ̄ .

Figure 1: Optimal Contract
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The sensitivity φ of the manager’s fee to the fund’s performance and the sensitivity χ to the index performance
as a function of the private-benefit parameter A. There are two groups of assets, with three assets in each
group. Assets in each group have identical characteristics, except for supply. Parameter values are: ρ = 1,
ρ̄ = 50, r = 4%, κ = 10%, N = 6, ηi = 1, θ1 = θ2 = θ3 = 0.7, θ4 = θ5 = θ6 = 0.3, bi = 1, s̄ = 0.65, ēi = 0.4,

σs = 1,
σ2
s

s̄ =
σ2
i

ēi
, for i = 1, .., 6.

Figure 2 plots price and return moments for individual assets as a function of the private-benefit

parameter A. The blue solid line represents assets in large supply and the red dashed line assets

in small supply. Consistent with Proposition 3.1, assets in small supply are more expensive than

assets in large supply and earn lower expected return. Moreover, consistent with Proposition 4.2,

the supply-driven distortions are exacerbated by agency frictions. These effects are significant

quantitatively. In the absence of frictions, small-supply assets earn an expected return of 4.5% and

large-supply assets earn 6%. When A = 0.15, the expected return of small-supply assets drops to

2.5% and that of large-supply assets rises to 12.5%. Thus, the expected-return differential increases

from 1.5% to 10%.

The results on return volatility parallel those on expected return. Assets in small supply are

more volatile than assets in small supply, and the supply-driven distortions are exacerbated by

agency frictions. In the absence of frictions, small-supply assets have return volatility equal to

25.8% and small-supply assets 25.4%. When A = 0.15, the volatility of small-supply assets rises to

30% and that of large-supply assets drops to 25.2%. Thus, the volatility differential increases from
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Figure 2: Agency Frictions and Cross-Sectional Pricing
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, dollar beta β$

i , and dollar alpha 1
dtα

$
i , as a function of the private-benefit

parameter A. There are two groups of assets, with three assets in each group. Assets in each group have
identical characteristics, except for supply. Parameter values are: ρ = 1, ρ̄ = 50, r = 4%, κ = 10%, N = 6,

ηi = 1, θ1 = θ2 = θ3 = 0.7, θ4 = θ5 = θ6 = 0.3, bi = 1, s̄ = 0.65, ēi = 0.4, σs = 1,
σ2
s

s̄ =
σ2
i

ēi
, for i = 1, .., 6.

Assets 1, 2, and 3, in the high-supply group are represented by the blue solid line, and assets 4, 5, and 6, in
the low-supply group are represented by the red dashed line.

0.4% to 4.8%, with most of the increase being driven by the assets in small supply.

The results on CAPM beta parallel those on volatility except when agency frictions are small.

In the absence of frictions, small-supply assets have beta equal to 0.99 and large-supply assets have

a slightly larger beta equal to 1.01. The difference in beta reverses when A exceeds 0.05. When

A = 0.15, the beta of small-supply assets rises to 1.1 and that of large-supply assets drops to 0.72.

The results in Figure 2 are consistent with the volatility and beta anomalies. Assets in small

supply have high return volatility and low expected return. Hence, volatility is negatively related

to expected return in the cross-section. The negative relationship continues to hold when volatility
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Figure 3: Agency Frictions and the Aggregate Market
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the aggregate market, as a function of the private-benefit parameter A. There are two groups of assets, with
three assets in each group. Assets in each group have identical characteristics, except for supply. Parameter
values are: ρ = 1, ρ̄ = 50, r = 4%, κ = 10%, N = 6, ηi = 1, θ1 = θ2 = θ3 = 0.7, θ4 = θ5 = θ6 = 0.3, bi = 1,

s̄ = 0.65, ēi = 0.4, σs = 1,
σ2
s
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ēi
, for i = 1, .., 6.

is replaced by its idiosyncratic component (not plotted in Figure 2). It also continues to hold when

volatility is replaced by beta, provided that agency frictions are large enough (A > 0.05). Moreover,

the negative relationship is reinforced when expected return is replaced by alpha. Indeed, alpha is

expected return adjusted for beta, and assets in small supply both earn low expected return, and

have high beta when frictions are large enough. For example, when A = 0.15, the alpha differential

between large- and small-supply assets is 13%, which is larger than the expected-return differential

of 10.5%.

Propositions 3.2, 3.3, and 4.3 show that volatility or beta are not always negatively related to

supply; the relationship is negative when idiosyncratic risk accounts for a large enough fraction of

return variance. The same applies to the relationship between risk measures and expected return

since supply and expected return are positively related. For example, under scale invariance and

no agency frictions, Proposition 3.2 implies that volatility is negatively related to expected return

if the asset-specific component of dividends accounts for more than half of return variance. Our

numerical example meets this condition. The extent of idiosyncratic risk that is required to generate

a negative risk-return relationship can be significantly lower, however, if the assumption of scale

invariance is dropped.

Figure 3 plots price and return moments for the aggregate market as a function of the private-

benefit parameter A. Consistent with Proposition 4.4, agency frictions cause the price of the

aggregate market to increase and its expected return to drop. The effect is quantitatively small,
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however: the expected return in the absence of agency frictions is 5.27%, and it drops to 5.18% when

A = 0.15. One reason why the effect is small is that fund investors can react to market overvaluation

by lowering their direct investment in the index or by changing the manager’s contract to induce him

to hold a smaller position in the index. If investors lacked the ability or understanding to undertake

these actions, the effects of agency frictions on the aggregate market might be significantly larger.

Figure 3 shows additionally that agency frictions can have a non-monotonic effect on the volatil-

ity of the aggregate market: volatility decreases for small frictions, but increases when frictions

become large enough. This result stands in-between that in Cuoco and Kaniel (2011), who find

that market volatility decreases with the extent of benchmarking, and that in Basak and Pavlova

(2013), who find that volatility increases.

5 Social Optimality

In this section we examine whether the privately optimal contract, determined in Section 4, is

socially optimal. We assume that a social planner chooses contract parameters (φ, χ, ψ) at time

zero. This is the social planner’s only intervention: given the contract, the manager is free to choose

the fund’s portfolio zt and the shirking action mt, and prices St must clear markets. Without loss

of generality, we restrict the investor’s direct investment in the index to be zero (x = 0).9

The social planner maximizes the investor’s value function at time zero, subject to the manager’s

incentive compatibility and individual rationality constraints. This optimization problem is the

same as the investor’s but the social planner internalizes that a change in the contract parameters

affects equilibrium prices. Formally, the value functions of the investor and the manager at time

zero can be written as V (W0, s0, e0, φ, χ, ψ,S) and V̄ (W̄0, s0, e0, φ, χ, ψ,S), respectively, where S
consists of the parameters (a01, .., a0N , a11, .., a1N , a21, .., a2N ) that describe the price process. The

investor chooses (φ, χ, ψ) taking S as given. The social planner instead internalizes the dependence

of S on (φ, χ).

The social planner’s optimization problem involves the utility of the investor and the manager,

but not of the buy-and-hold investors. These investors, however, are neutral for our normative

analysis, in the sense that the contract choice does not affect their asset holdings and dividend

stream. Indeed, buy-and-hold investors are endowed with the portfolio η − θ at time zero and do

not trade. Therefore, the dividend stream that they receive from their portfolio does not depend

9The set A of allocations that the social planner can achieve when restricting x to be zero includes the set A′ of
allocations when the investor can choose any value of x. This is because the social planner can induce the investor
to choose x = 0 through an appropriate choice of χ, without affecting the allocation. Moreover, the social planner’s
optimal allocation in A also belongs to A′. Indeed, Proposition 5.1 shows that under the optimal allocation the
investor and the manager agree on their valuation of the index ((4.3) holds). Therefore, the investor would choose
x = 0 even if the restriction x = 0 were lifted.
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on prices and on the contract choice.

When the parameter B in the manager’s private-benefit function Amt− B
2 m

2
t is equal to zero, as

assumed in Section 4, the social planner’s problem yields the same solution as the investor’s. Indeed,

the coefficient φ that characterizes the fee’s sensitivity to the fund’s performance must satisfy φ ≥ A,

so that the manager does not choose an arbitrarily large shirking action mt. Moreover, any φ ≥ A
yields no shirking, i.e., mt = 0. When A exceeds the value ρ

ρ+ρ̄ that φ takes in the absence of

agency frictions, the constraint φ ≥ A is binding. Hence, the social planner sets φ = A, as does the

investor.

The social planner chooses the same contract as the investor because φ = A is a corner solution.

The differences in marginal trade-offs between the social planner and the investor become apparent

when instead φ is an interior solution. Interior solutions are possible when the parameter B

is positive. Theorem 5.1 generalizes the equilibrium derived in the previous section to B > 0.

Proposition 5.1 solves the social planner’s problem and shows that solutions for the investor and

the social planner differ.

Theorem 5.1 (Equilibrium Prices and Contract with General Agency Frictions). When
ρ
ρ+ρ̄ ≥ A > 0, the equilibrium in Theorem 3.1 remains an equilibrium. When A > ρ

ρ+ρ̄ and

B ∈ [0, B] ∪ [B̄,∞) for two constants B̄ > B, the following form an equilibrium: the price process

St given by (2.14), (3.1), (4.1), and (4.2); the contract (φ, χ, ψ) with A ≥ φ > ρ
ρ+ρ̄ and χ > 0

solving the system of equations(
φ(1− φ)

B
+ r (a1 − ǎ1) θbŝ0 + r

N∑
i=1

(a2i − ǎ2i) θiêi0 = 0 and φ < A

)
or (5.1)(

φ(1− φ)

B
+ r (a1 − ǎ1) θbŝ0 + r

N∑
i=1

(a2i − ǎ2i) θiêi0 ≥ 0 and φ = A

)
, (5.2)

and (4.3), where ǎ1, ǎ2i, ŝ0, and êi0 are as in Theorem 4.1, and ψ = − (A−φ)2

2B ; and the index

investment x = 0.

The behavior of φ for A > ρ
ρ+ρ̄ is as follows. When B is positive but close to zero, φ = A

is a corner solution, as in the case B = 0. When B exceeds a threshold, φ = A ceases to be a

corner solution, and the solution becomes interior to the interval ( ρ
ρ+ρ̄ , A). Intuitively, the investor’s

benefit from raising φ is that the manager has a smaller incentive to undertake the shirking action.

At the same time, larger φ involves a cost to the investor because the manager becomes less willing

to take risk and hence to exploit price differentials driven by supply, i.e., invest relatively more in

30



high-θ assets and less in low-θ assets. When B increases, the manager derives a smaller benefit

from shirking. Hence the investor’s benefit from raising φ is smaller, which is why φ decreases

below A when B exceeds a threshold. When B becomes large, and so the manager’s benefit from

shirking converges to zero, φ converges to its value ρ
ρ+ρ̄ under no agency frictions.

The system of equations (4.3), (5.2), and (5.1) that determines (φ, χ, ψ) can have multiple

solutions when B > 0. This means that multiple equilibria can exist. The comparison between

socially and privately optimal contract shown in Proposition 5.1 applies to the privately optimal

contract in any of these equilibria.

The equilibrium in Theorem 5.1 may fail to exist for intermediate values of B. This is because

the investor may not be willing to employ the manager. Note that the investor is willing to

employ the manager not only when the benefit of shirking is small (B ≥ B̄) but also—and more

surprisingly—when it is large (B ≤ B). This is because of a general-equilibrium effect: when the

benefit from shirking is large, equilibrium prices are more distorted, making the supply portfolio

an even better investment than the index portfolio.

Proposition 5.1 (Socially Optimal Contract). When ρ
ρ+ρ̄ ≥ A ≥ 0, the socially optimal con-

tract (φ∗, χ∗, ψ∗) is as in Theorem 3.1. When A > ρ
ρ+ρ̄ , the socially optimal contract is as follows:

A ≥ φ∗ > ρ
ρ+ρ̄ and χ∗ > 0 are the unique solution to the system of equations

(
1− φ
B

+ r (a1 − ǎ1) θbŝ0 + r
N∑
i=1

(a2i − ǎ2i) θiêi0 = 0 and φ < A

)
or (5.3)(

1− φ
B

+ r (a1 − ǎ1) θbŝ0 + r
N∑
i=1

(a2i − ǎ2i) θiêi0 ≥ 0 and φ = A

)
, (5.4)

and (4.3), where ǎ1, ǎ2i, ŝ0, and êi0 are as in Theorem 4.1, and ψ∗ = − (A−φ∗)2
2B . The manager’s

fee under the socially optimal contract is more sensitive to the fund’s performance and to the index

performance than under the privately optimal contract (φ∗ ≥ φ, χ∗ ≥ χ), with the inequalities being

strict when φ < A.

Under the socially optimal contract, the manager has steeper incentives than under the privately

optimal contract, with the inequalities being strict when the privately optimal φ is an interior

solution. The intuition is that because the social planner internalizes price effects, he is more

effective than private agents in providing incentives. Indeed, recall that the investor’s benefit from

raising φ is that the manager shirks less, and her cost is that the manager becomes less willing to

take risk and exploit price differentials driven by supply. The cost is lower for the social planner.
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This is because when the social planner raises φ, equilibrium prices become more distorted, to

the point where the manager remains equally willing to exploit supply-driven price differentials.

Because cost and benefit are equalized at an interior solution, such a solution for the investor must

be strictly smaller than for the social planner.

The inefficiency can be viewed as a free-rider problem. Interpret the investor and the manager

as a continuum of identical investors and managers. When one investor in the continuum gives

steeper incentives to her manager, this makes the manager less willing to exploit mispricings. Other

managers, however, remain equally willing to do so, benefiting their investors. When all investors

give steeper incentives to their managers, mispricings become more severe, and all managers remain

equally willing to exploit them despite being exposed to more risk.

Because the social planner chooses steeper incentives than private agents, supply effects are

stronger under the socially optimal contract. Thus, the volatility and beta anomalies are stronger.

Agency frictions also have a larger positive effect on the price of the aggregate market.

6 Normally Distributed Cashflows

Our analysis in the previous sections assumes that asset cashflows evolve according to square-root

(SR) processes. While we use this particular specification for tractability, the key property that we

want to capture is that the volatility of cashflows per share increases with the cashflow level. To

show how this property matters for our results, we consider in this section a modification of our

model where the volatility of cashflows per share is constant. We replace the SR processes (2.3)

and (2.4) by the Ornstein-Uhlenbeck (OU) processes:

dst = κ (s̄− st) dt+ σsdwst, (6.1)

deit = κ (ēi − eit) dt+ σidwit. (6.2)

With OU processes, the diffusion coefficients (σs, σ1, .., σN ) are constant, and so is the volatility of

cashflows per share. Moreover, future cashflows per share are normally distributed conditional on

current information. Theorem 6.1 derives the equilibrium with OU processes and with or without

agency frictions.

Theorem 6.1 (Equilibrium Prices and Contract with OU Cashflow Processes). Sup-

pose that B = 0 and (st, e1t, .., eNt) evolve according to (6.1) and (6.2). The following form an
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equilibrium: the price process St given by (2.14) with

a0i =
κ(bis̄+ ēi)

r(r + κ)
−
ρ̄
[
bi(φθ − χη)bσ2

s + (φθi − χηi)σ2
i

]
(r + κ)2

, (6.3)

a1i =
bi

r + κ
≡ a1bi, (6.4)

a2i =
1

r + κ
; (6.5)

the contract (φ, χ, ψ) with

φ = max{A, ρ

ρ+ ρ̄
}, (6.6)

χ =

(
φ− ρ

ρ+ ρ̄

)
ηbθbσ2

s +
∑N

i=1 ηiθiσ
2
i

(ηb)2σ2
s +

∑N
i=1 η

2
i σ

2
i

, (6.7)

ψ = 0; (6.8)

and the index investment x = 0.

The key difference between Theorem 6.1 and its counterparts under SR processes (Theorems 3.1

and 4.1) is that the coefficients (a1i, a2i) of (st, eit) in the price function do not depend on supply.

Since the price can vary over time only because of (st, eit), supply has no effect on share return

volatility. Supply affects the price only through the term a0i, and this relationship is negative, as is

the case under SR processes. Thus, when comparing two assets that differ only in supply but have

otherwise identical characteristics, the asset in smaller supply is more expensive, has lower expected

share return, and has the same share return volatility. If share returns were to be converted into

dollar returns, the small-supply asset would have lower expected return and lower return volatility

because it is more expensive.10 Hence, supply would always induce a positive relationship between

risk and expected return, while the relationship can be negative under SR processes.

Proposition 6.1 (Supply Effects with OU Cashflow Processes). Suppose that A = 0 and

(st, e1t, .., eNt) evolve according to (6.1) and (6.2). An asset i in smaller supply than an otherwise

identical asset i′ has higher price at time t (Sit > Si′t), lower expected share return (E(dRit) <

E(dRi′t)), and same share return volatility (Var(dRit) = Var(dRi′t)).

The effects of agency frictions have a similar flavor to those of supply. When frictions are more

10Computing dollar returns under OU processes is made complicated by the fact that prices can be zero or even
negative. We use expected prices, as under SR processes, and assume that these are positive as would be the case if
the unconditional means (s̄, ē1, .., ēN ) are large enough.
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severe, prices become more distorted but share return volatilities are unaffected. The aggregate

market is also unaffected because a change in share return volatilities is key for such an effect.

Proposition 6.2 (Effects of Agency Frictions with OU Cashflow Processes). Suppose that

A > ρ
ρ+ρ̄ , B = 0, and (st, e1t, .., eNt) evolve according to (6.1) and (6.2). Following an increase

in the private-benefit parameter A, prices and expected share returns are affected as described in

Proposition 4.2, while share return volatilities and the price of the aggregate market are unaffected.

7 Conclusion

In this paper we study how the delegation of asset management affects equilibrium prices. Unlike

most prior literature, we endogenize both equilibrium prices and fund managers’ contracts. We show

that because of agency frictions, managers are compensated based on their performance relative

to a benchmark. As a consequence, they become less willing to deviate from the benchmark,

and the price distortions that they are hired to exploit become more severe. While distortions

are exacerbated in both directions, i.e., undervalued assets become cheaper and overvalued assets

become more expensive, the positive distortions dominate, biasing the aggregate market upwards.

This is because overvalued assets account for an increasingly large fraction of market movements

relative to undervalued assets, and hence trading against overvaluation is riskier for managers

than trading against undervaluation. Agency frictions can also generate a negative relationship

between risk and expected return in the cross-section, in line with empirical evidence but in contrast

to standard theories. This is because they raise the volatility of overvalued assets, through an

amplification mechanism. Following a positive shock to the expected cash flows of an overvalued

asset, the asset accounts for a larger fraction of market movements. This makes it riskier for

managers to underweight the asset, and the resulting buying pressure amplifies the price increase

caused by the higher cash flows.

Our model combines square-root processes for asset cashflows with constant absolute risk aver-

sion utility. This combination is to our knowledge new to the literature, including in a frictionless

setting. We show that it yields closed-form solutions for asset prices and can accommodate any

number of risky assets. It also generates more realistic properties for asset cashflows and prices

than the tractable CARA-normal alternative.

The effects of agency frictions in our model are reflected only on prices and not on fund man-

agers’ portfolios. This is because we are assuming a representative manager, who must hold in

equilibrium a fixed portfolio supplied by other agents. A natural extension of our analysis is to

introduce multiple managers with different levels of agency frictions, and examine how their port-
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folios differ. Such an extension could provide additional points of contact with the data. For

example, Christoffersen and Simutin (2014) find that fund managers who face greater pressure to

meet benchmarks hold a larger fraction of their portfolios in high-beta stocks and achieve lower

alphas. Their findings are in the spirit of our theoretical results.

Our analysis can also be extended on the normative front. One extension is to examine whether

the result that socially optimal contracts cause larger pricing distortions than privately optimal

contracts continues to hold when distortions affect the real economy. Another extension is to allow

for more degrees of freedom in contract design, e.g., the choice of benchmark which in our model is

assumed to be the index, and study how privately optimal choices compare with socially optimal

ones.
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Appendix A: Proofs

Proof of Theorem 3.1. The theorem follows from the proof of Theorem 4.1, which covers the case A =

0.

Proof of Proposition 3.1. Substituting a0i from (3.1), we can write the price (2.14) of asset i as

Sit = a1biŝt + a2iêit, (A.1)

and asset i’s expected price as

E(Sit) =
r + κ

r
(a1bis̄+ a2iēi) , (A.2)

where ŝt ≡ st + κ
r s̄ and êit ≡ eit + κ

r ēi. Since asset i′ differs from asset i only in its supply (θi 6= θi′), its

price differs from the price of asset i only because a2i 6= a2i′ . Since, in addition, θi < θi′ , (3.3) implies that

a2i > a2i′ . Therefore, (A.1) implies that Sit > Si′t, and (A.2) implies that E(Sit) > E(Si′t).

Substituting a0i from (3.1), we can write the share return (A.23) of asset i as

dRit =
{

[1− (r + κ)a1]bist + [1− (r + κ)a2i]eit
}
dt+ a1biσs

√
stdwst + a2iσi

√
eitdwit. (A.3)

The expected share return is

E(dRit) = {[1− (r + κ)a1]bis̄+ [1− (r + κ)a2i]ēi} dt

= [bis̄+ ēi − rE(Sit)] dt, (A.4)

where the second step follows from (A.2). Since E(Sit) > E(Si′t), (A.4) implies that E(dRit) < E(dRi′t).

The expected dollar return is

E
(
dRit
E(Sit)

)
=

E(dRit)

E(Sit)

=

[
bis̄+ ēi
E(Sit)

− r
]
dt, (A.5)

where the second step follows from (A.4). Since bis̄ + ēi > 0 and E(Sit) > E(Si′t), (A.5) implies that

E
(
dRit
E(Sit)

)
< E

(
dRi′t
E(Si′t)

)
.

Proof of Proposition 3.2. Equation (A.3) implies that the share return variance of asset i is

Var(dRit) = E
[
(dRit)

2
]
− [E(dRit)]

2

= E
[
(dRit)

2
]

= E
[(
a2

1b
2
iσ

2
sst + a2

2iσ
2
i eit

)
dt
]

=
(
a2

1b
2
iσ

2
s s̄+ a2

2iσ
2
i ēi
)
dt, (A.6)
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where the second step follows because the term E
[
(dRit)

2
]

is of order dt and the term [E(dRit)]
2

is of order

(dt)2. Since a2i > a2i′ , (A.6) implies that Var(dRit) > Var(dRi′t).

Equations (A.2) and (A.6) imply that the dollar return variance of asset i is

Var

(
dRit
E(Sit)

)
=

a2
1b

2
iσ

2
s s̄+ a2

2iσ
2
i ēi

(r+κ)2

r2 (a1bis̄+ a2iēi)
2
dt. (A.7)

Since asset i′ differs from asset i only in its supply, (A.7) implies that Var
(
dRit
E(Sit)

)
> Var

(
dRi′t
E(Si′t)

)
if and

only if

a2
1b

2
iσ

2
s s̄+ a2

2iσ
2
i ēi

(a1bis̄+ a2iēi)
2 >

a2
1b

2
iσ

2
s s̄+ a2

2i′σ
2
i ēi

(a1bis̄+ a2i′ ēi)
2

⇔
(
a2

1b
2
iσ

2
s s̄+ a2

2iσ
2
i ēi
)

(a1bis̄+ a2i′ ēi)
2 −

(
a2

1b
2
iσ

2
s s̄+ a2

2i′σ
2
i ēi
)

(a1bis̄+ a2iēi)
2
> 0 (A.8)

⇔ (a2i − a2i′)
[
a1bi(a2i + a2i′)(σ

2
i s̄− σ2

s ēi) + 2(a2ia2i′σ
2
i ēi − a2

1b
2
iσ

2
s s̄)
]
> 0. (A.9)

Since a2i > a2i′ , (A.9) is equivalent to (3.6).

Proof of Proposition 3.3. Equation (A.3) implies that the share return of the index is

dRηt =
{

[1− (r+κ)a1]ηbst+

N∑
j=1

[1− (r+κ)a2i]ηjejt
}
dt+a1ηbσs

√
stdwst+

N∑
j=1

a2jηjσj
√
ejtdwjt. (A.10)

Equations (3.9), (A.3) and (A.10) imply that the share beta of asset i is

βi =
Cov(dRit, dRηt)

Var(dRηt)
=

E (dRitdRηt)

E [(dRηt)2]
=

a2
1biηbσ

2
s s̄+ a2

2iηiσ
2
i ēi

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

. (A.11)

Since a2i > a2i′ , (A.11) implies that βi > βi′ .

Equation (A.2) implies that the expected share price of the index is

E(ηSt) =
r + κ

r

a1ηbs̄+

N∑
j=1

a2jηj ēj

 . (A.12)

Equations (3.10), (A.2), (A.11), and (A.12) imply that the dollar beta of asset i is

β$
i =

a2
1biηbσ

2
s s̄+ a2

2iηiσ
2
i ēi

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

a1ηbs̄+
∑N
j=1 a2jηj ēj

a1bis̄+ a2iēi
. (A.13)

Equation (A.13) implies that β$
i > β$

i′ if and only if

a2
1biηbσ

2
s s̄+ a2

2iηiσ
2
i ēi

a1bis̄+ a2iēi
>
a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi

a1bis̄+ a2i′ ēi

⇔
(
a2

1biηbσ
2
s s̄+ a2

2iηiσ
2
i ēi
)

(a1bis̄+ a2i′ ēi)−
(
a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi
)

(a1bis̄+ a2iēi) > 0 (A.14)

⇔ (a2i − a2i′)
[
a1bi(a2i + a2i′)ηiσ

2
i s̄+ a2ia2i′ηiσ

2
i ēi − a2

1biηbσ
2
s s̄
]
> 0. (A.15)
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Since a2i > a2i′ , (A.15) is equivalent to (3.11).

Equations (A.6), (A.10), and (A.11) imply that the idiosyncratic share return variance of asset i is

Var(dεit) = Var(dRit)− β2
i Var(dRηt)

=

[
a2

1b
2
iσ

2
s s̄+ a2

2iσ
2
i ēi −

(
a2

1biηbσ
2
s s̄+ a2

2iηiσ
2
i ēi
)2

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

]
dt. (A.16)

Equation (A.16) implies that Var(dεit) > Var(dεi′t) if and only if

a2
2iσ

2
i ēi −

(
a2

1biηbσ
2
s s̄+ a2

2iηiσ
2
i ēi
)2

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

> a2
2i′σ

2
i ēi −

(
a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi
)2

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

⇔ (a2
2i − a2

2i′)σ
2
i ēi

a2
1(ηb)2σ2

s s̄+

N∑
j=1

a2
2jη

2
jσ

2
j ēj

− [(a2
1biηbσ

2
s s̄+ a2

2iηiσ
2
i ēi
)2 − (a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi
)2]

> 0

⇔ (a2
2i − a2

2i′)

a2
1(ηb)2σ2

s s̄+

N∑
j=1

a2
2jη

2
jσ

2
j ēj − ηi

(
2a2

1biηbσ
2
s s̄+ (a2

2i + a2
2i′)ηiσ

2
i ēi
) > 0. (A.17)

Eq. (A.17) holds because a2i > a2i′ ,

(ηb)2 ≥ (ηibi + ηi′bi′)(ηb) = 2ηibiηb,

N∑
j=1

a2
2jη

2
jσ

2
j ēj ≥ a2

2iη
2
i σ

2
i ēi + a2

2i′η
2
i′σ

2
i′ ēi′ = (a2

2i + a2
2i′)η

2
i σ

2
i ēi.

Equations (A.2) and (A.16) imply that the idiosyncratic dollar return variance of asset i is

Var

(
dεit

E(Sit)

)
=
a2

1b
2
iσ

2
s s̄+ a2

2iσ
2
i ēi −

(a21biηbσ
2
s s̄+a

2
2iηiσ

2
i ēi)

2

a21(ηb)2σ2
s s̄+

∑N
j=1 a

2
2jη

2
jσ

2
j ēj

(r+κ)2

r2 (a1bis̄+ a2iēi)
2

dt. (A.18)

Equation (A.18) implies that Var
(

dεit
E(Sit)

)
> Var

(
dεi′t

E(Si′t)

)
if and only if

a2
1b

2
iσ

2
s s̄+ a2

2iσ
2
i ēi −

(a21biηbσ
2
s s̄+a

2
2iηiσ

2
i ēi)

2

a21(ηb)2σ2
s s̄+

∑N
j=1 a

2
2jη

2
jσ

2
j ēj

(a1bis̄+ a2iēi)
2 >

a2
1b

2
iσ

2
s s̄+ a2

2i′σ
2
i ēi −

(a21biηbσ
2
s s̄+a

2
2i′ηiσ

2
i ēi)

2

a21(ηb)2σ2
s s̄+

∑N
j=1 a

2
2jη

2
jσ

2
j ēj

(a1bis̄+ a2i′ ēi)
2

⇔

a2
1(ηb)2σ2

s s̄+

N∑
j=1

a2
2jη

2
jσ

2
j ēj

[(a2
1b

2
iσ

2
s s̄+ a2

2iσ
2
i ēi
)

(a1bis̄+ a2i′ ēi)
2 −

(
a2

1b
2
iσ

2
s s̄+ a2

2i′σ
2
i ēi
)

(a1bis̄+ a2iēi)
2
]

−
[(
a2

1biηbσ
2
s s̄+ a2

2iηiσ
2
i ēi
)2

(a1bis̄+ a2i′ ēi)
2 −

(
a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi
)2

(a1bis̄+ a2iēi)
2
]
> 0.

(A.19)

Using the same calculations as when deriving (A.9) from (A.8) and (A.15) from (A.14), we can write the

right-hand side of (A.19) as (a2i − a2i′)ēi times the right-hand side of (3.12). Since a2i > a2i′ , (A.19) is

equivalent to (3.12).
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Proof of Proposition 3.4. Since E(dRit) < E(dRi′t) and βi > βi′ , (3.15) implies that αi < αi′ . Equations

(3.16), (A.2), (A.4), (A.12), and (A.13) imply that the dollar alpha of asset i is

α$
i =

r(bis̄+ ēi)

(r + κ)(a1bis̄+ a2iēi)
−r− a2

1biηbσ
2
s s̄+ a2

2iηiσ
2
i ēi

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

r[1− (r + κ)a1]ηbs̄+ r
∑N
j=1[1− (r + κ)a2j ]ηj ēj

(r + κ)(a1bis̄+ a2iēi)
.

(A.20)

Equation (A.20) implies that α$
i < α$

i′ if and only if

bis̄+ ēi
a1bis̄+ a2iēi

− a2
1biηbσ

2
s s̄+ a2

2iηiσ
2
i ēi

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

[1− (r + κ)a1]ηbs̄+
∑N
j=1[1− (r + κ)a2j ]ηj ēj

a1bis̄+ a2iēi

<
bis̄+ ēi

a1bis̄+ a2i′ ēi
− a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

[1− (r + κ)a1]ηbs̄+
∑N
j=1[1− (r + κ)a2j ]ηj ēj

a1bis̄+ a2i′ ēi

⇔ (a2i − a2i′)ēi(bis̄+ ēi) +
[1− (r + κ)a1]ηbs̄+

∑N
j=1[1− (r + κ)a2j ]ηj ēj

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

×
[(
a2

1biηbσ
2
s s̄+ a2

2iηiσ
2
i ēi
)

(a1bis̄+ a2i′ ēi)−
(
a2

1biηbσ
2
s s̄+ a2

2i′ηiσ
2
i ēi
)

(a1bis̄+ a2iēi)
]
> 0

⇔ (a2i − a2i′)ēi

[
bis̄+ ēi +

[1− (r + κ)a1] ηbs̄+
∑N
j=1 [1− (r + κ)a2j ] ηj ēj

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

×
(
a1bi(a2i + a2i′)ηiσ

2
i s̄+ a2ia2i′ηiσ

2
i ēi − a2

1biηbσ
2
s s̄
)]

> 0. (A.21)

Since a2i > a2i′ , (A.21) is equivalent to

bis̄+ēi+
[1− (r + κ)a1] ηbs̄+

∑N
j=1 [1− (r + κ)a2j ] ηj ēj

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
j ēj

(
a1bi(a2i + a2i′)ηiσ

2
i s̄+ a2ia2i′ηiσ

2
i ēi − a2

1biηbσ
2
s s̄
)
> 0.

(A.22)

Since
∑N
j=1 ηjαj = 0, there exists i∗ such that αi∗ ≥ 0 and α$

i∗ ≥ 0. Equation (A.20) written for i∗ implies

that the left-hand side of (A.22) is larger than

(r + κ)(a1bis̄+ a2i∗ ēi) +
[1− (r + κ)a1] ηbs̄+

∑N
j=1 [1− (r + κ)a2j ] ηj ēj

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
i ēi

×
[
a2

1biηbσ
2
s s̄+ a2

2i∗ηiσ
2
i ēi +

(
a1bi(a2i + a2i′)ηiσ

2
i s̄+ a2ia2i′ηiσ

2
i ēi − a2

1biηbσ
2
s s̄
)]

= (r + κ)(a1bis̄+ a2i∗ ēi) +
[1− (r + κ)a1] ηbs̄+

∑N
j=1 [1− (r + κ)a2j ] ηj ēj

a2
1(ηb)2σ2

s s̄+
∑N
j=1 a

2
2jη

2
jσ

2
i ēi

×
[
a1bi(a2i + a2i′)ηiσ

2
i s̄+ (a2

2i∗ + a2ia2i′)ηiσ
2
i ēi
]
> 0.

Therefore, (A.22) holds, and so does (A.21).

Proof of Theorem 4.1. We allow A to be zero so that the proof can also cover Theorem 3.1. The proof

assumes B = 0, but when A = 0 the proof carries through unchanged to B > 0. We proceed in two steps:
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• Step 1: We fix a contract (φ, χ, ψ) with φ ≥ A, and show that for the price function (2.14) and the

coefficients (a0i, a1i, a2i) given by (3.1), (4.1), and (4.2), zt = θ solves the optimization problem of

an employed manager. Hence, markets clear provided that the manager accepts the contract (φ, χ, ψ)

and the investor invests x = 0 in the index.

• Step 2: We fix prices given by (2.14), (3.1), (4.1), and (4.2), and show that the investor decides to

employ the manager, i.e., offer a contract that the manager accepts, and that the contract (φ, χ, ψ)

given in Theorems 3.1 and 4.1, and the index investment x = 0, solve the investor’s optimization

problem. Hence, an equilibrium exists, and is as in the theorems.

Step 1. Substituting Sit from (2.14) into (2.2), and using (2.1), (2.3), and (2.4), we can write the excess

return dRit of asset i as

dRit = µitdt+ a1iσs
√
stdwst + a2iσi

√
eitdwit, (A.23)

where

µit ≡ (κa1is̄+ κa2iēi − ra0i) + [bi − (r + κ)a1i]st + [1− (r + κ)a2i]eit. (A.24)

We set µt ≡ (µ1t, .., µNt)
′.

We conjecture that the value function of an employed manager takes the form

V̄ (W̄t, st, et) = − exp

[
−

(
rρ̄W̄t + q̄0 + q̄1st +

N∑
i=1

q̄2ieit

)]
, (A.25)

where (q̄0, q̄1, q̄21, .., q̄2N ) are constants. The manager’s Bellman equation is

max
c̄t,zt,mt

[
− exp(−ρ̄c̄t) +DV̄t − δ̄V̄t

]
= 0, (A.26)

where DV̄t is the drift of V̄t.

Using (2.3), (2.4), (2.5), (2.7), and (A.23), we find that the dynamics of J̄t ≡ rρ̄W̄t+q̄0+q̄1st+
∑N
i=1 q̄2ieit

are

dJ̄t = Ḡtdt+ H̄tdwst +

N∑
i=1

K̄itdwit, (A.27)

where

Ḡt ≡ rρ̄
[
rW̄t + (φzt − χη)µt + ψ + (A− φ)mt − c̄t

]
+ κ

[
q̄1(s̄− st) +

N∑
i=1

q̄2i(ēi − eit)

]
,

H̄t ≡

[
rρ̄

N∑
i=1

(φzit − χηi)a1i + q̄1

]
σs
√
st,

K̄it ≡ [rρ̄(φzit − χηi)a2i + q̄2i]σi
√
eit.
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Using V̄ (W̄t, st, et) = − exp(J̄t), (A.27), and Ito’s lemma, we find that the drift DV̄t of V̄t is

DV̄t = −V̄t

(
Ḡt −

1

2
H̄2
t −

1

2

N∑
i=1

K̄2
it

)
. (A.28)

Substituting into (A.26), we can write the manager’s Bellman equation as

max
c̄t,zt,mt

[
− exp(−ρ̄c̄t)− V̄t

(
Ḡt −

1

2
H̄2
t −

1

2

N∑
i=1

K̄2
it

)
− δ̄V̄t

]
= 0. (A.29)

The first-order condition with respect to c̄t is

ρ̄ exp(−ρ̄c̄t) + rρ̄V̄t = 0.

Using (A.25) to substitute for V̄t, and solving for c̄t, we find

c̄t = rW̄t +
1

ρ̄

(
q̄0 − log(r) + q̄1st +

N∑
i=1

q̄2ieit

)
. (A.30)

The first-order condition with respect to mt is

mt = 0 (A.31)

because φ ≥ A. (For φ > A, the manager has a strict preference for mt = 0. For φ = A, the manager is

indifferent between all values of mt, and we assume that he chooses mt = 0.) The first-order condition with

respect to zit is

rρ̄φµit − rρ̄φa1i

[
rρ̄

N∑
i=1

(φzit − χηi)a1i + q̄1

]
σ2
sst − rρ̄φa2i [rρ̄(φzit − χηi)a2i + q̄2i]σ

2
i eit = 0. (A.32)

The portfolio zt = θ solves the manager’s optimization problem if (A.102) holds for zt = θ and for all values

of (st, e1t, .., eNt). Substituting µit from (A.24), and dividing by rρ̄φ throughout, we can write (A.102) for

zt = θ as

A0i +A1ist +A2ieit = 0, (A.33)

where

A0i ≡ κ(a1is̄+ a2iēi)− ra0i,

A1i ≡ bi − (r + κ)a1i − a1i

[
rρ̄

N∑
i=1

(φθi − χηi)a1i + q̄1

]
σ2
s ,

A2i ≡ 1− (r + κ)a2i − a2i [rρ̄(φθi − χηi)a2i + q̄2i]σ
2
i .

The left-hand side of (A.33) is an affine function of (st, eit). Therefore, (A.102) holds for zt = θ and for all
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values of (st, e1t, .., eNt) if A0i = A1i = A2i = 0. Before linking these equations to the coefficients (a0i, a1i, a2i)

given in the proposition, we determine a set of additional equations that follow from the requirement that

the manager’s Bellman equation (A.29) holds. Using (A.30), (A.31), and (A.102) to substitute c̄t, mt, and

µit, we can write (A.29) for zt = θ as

Q̄0 + Q̄1st +

N∑
i=1

Q̄2ieit = 0, (A.34)

where

Q̄0 ≡ rq̄0 − rρ̄ψ − κ

(
q̄1s̄+

N∑
i=1

q̄2iēi

)
+ r − δ̄ − r log(r),

Q̄1 ≡ (r + κ)q̄1 +
1

2
q̄2
1σ

2
s −

1

2

[
rρ̄

N∑
i=1

(φθi − χηi)a1i

]2

σ2
s ,

Q̄2i ≡ (r + κ)q̄2i +
1

2
q̄2
2iσ

2
i −

1

2
[rρ̄(φθi − χηi)a2i]

2
σ2
i .

The left-hand side of (A.34) is an affine function of (st, e1t, .., eNt). Therefore, (A.34) holds for zt = θ and

for all values of (st, e1t, .., eNt) if Q̄0 = Q̄1 = Q̄21 = .. = Q̄2N = 0.

We next show that equations A0i = A1i = A2i = 0 and Q̄0 = Q̄1 = Q̄2i = 0 determine the coefficients

(a0i, a1i, a2i, q̄0, q̄1, q̄2i) uniquely, with (a0i, a1i, a2i) being as in the proposition. This will imply that zt = θ

solves the manager’s optimization problem given the prices in the proposition. Equation A1i = 0 implies

that a1i = a1bi, with a1 being independent of i. Hence, A1i = 0 can be replaced by A1 = 0 with

A1 ≡ 1− (r + κ)a1 − a1 [rρ̄(φθ − χη)ba1 + q̄1]σ2
s .

Moreover, Q̄1 can be written as

Q̄1 = (r + κ)q̄1 +
1

2
q̄2
1σ

2
s −

1

2
[rρ̄(φθ − χη)ba1]

2
σ2
s .

The quadratic equation Q̄1 = 0 has the unique positive root11

q̄1 =

√
(r + κ)2 + [rρ̄(φθ − χη)ba1]

2
σ4
s − (r + κ)

σ2
s

. (A.35)

11Holding wealth W̄t constant, the manager is better off the larger st is. This is because with larger st, dividends
are more volatile, and the manager must earn higher compensation in equilibrium for investing in the risky assets.
(In the extreme case where volatility is zero, risky assets earn the riskless return r, and the manager derives no
benefit from investing in them.) Because the manager’s utility increases in st, the coefficient q̄1 must be positive.
The coefficients (q̄21, .., q̄2N ), and the counterparts of (q̄1, q̄21, .., q̄2N ) in the investor’s value function, must be positive
for the same reason.
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Substituting (A.35) into A1 = 0, we find

1− a2
1rρ̄(φθ − χη)bσ2

s = a1

√
(r + κ)2 + [rρ̄(φθ − χη)ba1]

2
σ4
s

⇒ 1− a2
1

[
(r + κ)2 + 2rρ̄(φθ − χη)bσ2

s

]
= 0

⇒ a1 =
1√

(r + κ)2 + 2rρ̄(φθ − χη)bσ2
s

(A.36)

where the second equation follows from the first by squaring both sides and simplifying. Eqs. a1i = bia1 and

(A.36) coincide with (4.1). Substituting (A.36) into (A.35) we can determine q̄1:

q̄1 =
(r + κ)2 + rρ̄(φθ − χη)bσ2

s

σ2
s

√
(r + κ)2 + 2rρ̄(φθ − χη)bσ2

s

− r + κ

σ2
s

. (A.37)

Following the same procedure to solve the system of A2i = Q̄2i = 0, we find (4.2) and

q̄2i =
(r + κ)2 + rρ̄(φθi − χηi)σ2

i

σ2
i

√
(r + κ)2 + 2rρ̄(φθi − χηi)bσ2

i

− r + κ

σ2
i

. (A.38)

Finally, A0i = 0 implies (3.1), and Q̄0 = 0 implies

q̄0 = ρ̄ψ +
κ

r

(
q̄1s̄+

N∑
i=1

q̄2iēi

)
− 1 +

δ̄

r
+ log(r). (A.39)

Step 2. We conjecture that the value function of the investor when he employs the manager, offers contract

(φ̃, χ̃, ψ̃) that satisfies φ̃ ≥ A and can differ from the equilibrium contract (φ, χ, ψ), and invests x in the

index, takes the form

V (Wt, st, et) = − exp

[
−

(
rρWt + q0 + q1st +

N∑
i=1

q2ieit

)]
, (A.40)

where (q0, q1, q21, .., q2N ) are constants. The investor’s Bellman equation is

max
ct

[− exp(−ρct) +DVt − δVt] = 0, (A.41)

where DVt is the drift of Vt.

When the investor offers the equilibrium contract (φ, χ, ψ), the manager’s first-order condition (A.102)

is satisfied for zt = θ, as shown in Step 1. When the investor offers contract (φ̃, χ̃, ψ̃) with φ̃ ≥ A, (A.102)

is satisfied for zt given by

φ̃zit − χ̃ηi = φθi − χηi

⇒ zit =
φθi + (χ̃− χ)ηi

φ̃
. (A.42)

This is because (A.102) depends on (φ̃, χ̃, ψ̃) only through the quantity φ̃zit− χ̃ηi: if (φ̃, χ̃, ψ̃) changes, then

zit also changes in a way that φ̃zit−χ̃ηi is kept constant. The economic intuition is that the manager chooses
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the fund’s portfolio zt to “undo” a change in contract: his personal risk exposure, through the fee, is the

same under (φ̃, χ̃, ψ̃) and (φ, χ, ψ). The manager’s personal risk exposure arises through the fee’s variable

component, which is (φ̃zt − χ̃η)dRt under (φ̃, χ̃, ψ̃), and (φθ − χη)dRt under (φ, χ, ψ). Eq. (A.42) relies on

the assumption that the investor and the manager take asset prices as given and independent of the contract.

Formally, the contract (φ̃, χ̃, ψ̃) in (A.102) does not affect the price coefficients (ai0, a1i, a2i). We drop the

time subscript from the portfolio zt in (A.42) because that portfolio is constant over time.

Using (2.3), (2.4), (2.5), (2.11), (A.23), mt = 0 (which holds because φ̃ ≥ A), and (A.42), we find that

the dynamics of Jt ≡ rρWt + q0 + q1st +
∑N
i=1 q2ieit are

dJt = Gtdt+Htdwst +

N∑
i=1

Kitdwit, (A.43)

where

Gt ≡ rρ
[
rWt + (xη + z − φθ + χη)µt − ψ̃ − ct

]
+ κ

[
q1(s̄− st) +

N∑
i=1

q2i(ēi − eit)

]
,

Ht ≡ [rρ(xη + z − φθ + χη)ba1 + q1]σs
√
st,

Kit ≡ [rρ(xηi + z − φθi + χηi)a2i + q2i]σi
√
eit.

Proceeding as in Step 1, we can write the investor’s Bellman equation (A.41) as

max
cbt

[
− exp(−ρct)− Vt

(
Gt −

1

2
H2
t −

1

2

N∑
i=1

K2
it

)
− δVt

]
= 0. (A.44)

The first-order condition with respect to ct is

ρ exp(−ρct) + rρVt = 0,

and yields

ct = rWt +
1

ρ

(
q0 − log(r) + q1st +

N∑
i=1

q2ieit

)
. (A.45)

Using (A.45) to substitute ct, we can write (A.44) as

Q0 +Q1st +

N∑
i=1

Q2ieit = 0, (A.46)
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where

Q0 ≡ rq0 + rρψ̃ − κ

(
q1s̄+

N∑
i=1

q2iēi

)
+ r − δ̄ − r log(r),

Q1 ≡ (r + κ)q1 +
1

2
q2
1σ

2
s − rρ(xη + z − φθ + χη)ba1

×
[
rρ̄(φθ − χη)ba1 −

1

2
rρ(xη + z − φθ + χη)ba1 + q̄1 − q1

]
σ2
s ,

Q2i ≡ (r + κ)q2i +
1

2
q2
2iσ

2
i − rρ(xηi + zi − φθi + χηi)a2i

×
[
rρ̄(φθi − χηi)a2i −

1

2
rρ(xηi + zi − φθi + χηi)a2i + q̄2i − q2i

]
σ2
i .

The left-hand side of (A.34) is an affine function of (st, e1t, .., eNt). Therefore, (A.34) holds for all values of

(st, e1t, .., eNt) if Q0 = Q1 = Q21 = .. = Q2N = 0. Using A1 = 0 we can simplify Q1 to

Q1 = (r + κ)q1 +
1

2
q2
1σ

2
s + rρ(xη + z − φθ + χη)ba1

×
[

1

2
rρ(xη + z − φθ + χη)ba1σ

2
s − q1σ

2
s + r + κ− 1

a1

]
,

and using A2i = 0 we can simplify Q2i to

Q2i = (r + κ)q2i +
1

2
q2
2iσ

2
i + rρ(xηi + zi − φθi + χηi)a2i

×
[

1

2
rρ(xηi + zi − φθi + χηi)a2iσ

2
i − q2iσ

2
i + r + κ− 1

a2i

]
.

Using the simplified expressions, we find that the positive root of Q1 = 0 is

q1 =

√
(r + κ)2 + 2rρ(xη + z − φθ + χη)bσ2

s − (r + κ)

σ2
s

− rρ(xη + z − φθ + χη)ba1, (A.47)

and the positive root of Q2i = 0 is

q2i =

√
(r + κ)2 + 2rρ(xηi + zi − φθi + χηi)σ2

i − (r + κ)

σ2
i

− rρ(xηi + zi − φθi + χηi)a2i. (A.48)

Moreover, Q0 = 0 implies

q0 = −ρψ̃ +
κ

r

(
q1s̄+

N∑
i=1

q2iēi

)
− 1 +

δ

r
+ log(r). (A.49)

If the investor decides to employ the manager, then she chooses a contract (φ̃, χ̃, ψ̃) and index invest-

ment x to maximize her time-zero value function V (W0, s0, e0). This objective is equivalent to q0 + q1s0 +
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∑N
i=1 q2iei0 because of (A.40), and the latter objective is equivalent to

−ρψ̃ + q1ŝ0 +

N∑
i=1

q2iêi0 (A.50)

because of (A.49). The maximization is subject to the manager’s individual rationality (IR) constraint (2.9).

To derive the time-zero value function V̄ (W̄0, s0, e0) of an employed manager under a contract (φ̃, χ̃, ψ̃), we

recall from (A.42) that the contract does not affect the manager’s personal risk exposure (φ̃zt−χ̃η = φθ−χη).

The contract also does not affect the manager’s shirking action mt, which is zero because φ̃ ≥ A. Hence, the

value function is as in Step 1, i.e., as under the equilibrium contract (φ, χ, ψ), with (q̄1, q̄21, .., q̄2N ) given by

(A.37) and (A.38), and q̄0 given by

q̄0 = ρ̄ψ̃ +
κ

r

(
q̄1s̄+

N∑
i=1

q̄2iēi

)
− 1 +

δ̄

r
+ log(r)

instead of (A.39). The time-zero value function V̄u(W̄0, s0, e0) of an unemployed manager follows by the same

argument. An unemployed manager can be viewed as an employed one with contract (φ̃, χ̃, ψ̃) = (1, 0, 0)

and shirking action mt = 0. Hence, the value function is as in Step 1, with (q̄1, q̄21, .., q̄2N ) given by (A.37)

and (A.38), and q̄0 given by

q̄0 =
κ

r

(
q̄1s̄+

N∑
i=1

q̄2iēi

)
− 1 +

δ̄

r
+ log(r).

The manager’s IR constraint (2.9) thus reduces to

ψ̃ ≥ 0.

The investor chooses ψ̃ that meets this constraint with equality: ψ̃ = 0. Substituting into (A.50), we can

write the investor’s optimization problem as

max
φ̃,χ̃,x

(
q1ŝ0 +

N∑
i=1

q2iêi0

)
,

subject to the constraint φ̃ ≥ A. Because this problem is concave, the first-order conditions characterize an

optimum. To confirm that (φ̃, χ̃, x) = (φ, χ, 0) is an optimum, we thus need to check that the first-order

conditions are satisfied for (φ, χ, 0). Equation (A.42) implies that∣∣∣∣ ∂z∂φ̃
∣∣∣∣
(φ̃,χ̃)=(φ,χ)

= − θ
φ
, (A.51)∣∣∣∣ ∂z∂χ̃

∣∣∣∣
(φ̃,χ̃)=(φ,χ)

=
η

φ
. (A.52)
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Using (A.47), (A.48), (A.51), and (A.52), we find

∂

∂φ̃

(
q1ŝ0 +

N∑
i=1

q2iêi0

)∣∣∣∣∣
(φ̃,χ̃,x)=(φ,χ,0)

=
rρ

φ

[
(a1 − ǎ1) θbŝ0 +

N∑
i=1

(a2i − ǎ2i) θiêi0

]
≡ rρ

φ
Φ, (A.53)

∂

∂φ̃

(
q1ŝ0 +

N∑
i=1

q2iêi0

)∣∣∣∣∣
(φ̃,χ̃,x)=(φ,χ,0)

= −rρ
φ

[
(a1 − ǎ1) ηbŝ0 +

N∑
i=1

(a2i − ǎ2i) ηiêi0

]
≡ −rρ

φ
X,

(A.54)

∂

∂x

(
q1ŝ0 +

N∑
i=1

q2iêi0

)∣∣∣∣∣
(φ̃,χ̃,x)=(φ,χ,0)

= −rρX. (A.55)

The first-order conditions with respect to χ̃ and x require that X = 0, which is equivalent to (4.3). The

first-order condition with respect to φ̃ requires that Φ is non-positive if φ = A and is equal to zero if φ > A.

To show that the values of (φ, χ) implied by these conditions are as in Theorems 3.1 and 4.1, we first

characterize the solution χ of (4.3) and then determine the sign of Φ.

Given φ ∈ [0, 1], X is increasing in χ because a1 is increasing in χ from (4.1), a2i is increasing in χ from

(4.2), ǎ1 is decreasing in χ from (4.4), and ǎ2i is decreasing in χ from (4.5). It converges to ∞ when χ goes

to

χ̄ ≡ min

{[
(r + κ)2

2rρ̄σ2
s

+ φθb

]
1

ηb
, min
i=1..,N

[
(r + κ)2

2rρ̄σ2
i

+ φθi

]
1

ηi

}
,

and to −∞ when χ goes to

χ ≡ −min

{[
(r + κ)2

2rρ̄σ2
s

+ (1− φ)θb

]
1

ηb
, min
i=1..,N

[
(r + κ)2

2rρ̄σ2
i

+ (1− φ)θi

]
1

ηi

}
.

Therefore, (4.3) has a unique solution χ(φ). Moreover, X is decreasing in φ because a1 is decreasing in φ

from (4.1), a2i is decreasing in φ from (4.2), ǎ1 is increasing in φ from (4.4), and ǎ2i is increasing in φ from

(4.5). Therefore, χ(φ) is increasing in φ. Since X = 0 for (φ, χ) = ( ρ
ρ+ρ̄ , 0), χ(φ) has the same sign as

φ− ρ
ρ+ρ̄ .

We next substitute χ(φ) into Φ, and show property (P): Φ has the same sign as ρ
ρ+ρ̄ − φ. Property (P)

will imply that the values of (φ, χ) are as in Theorems 3.1 and 4.1. Indeed, when A ≤ ρ
ρ+ρ̄ , Φ cannot be

negative: the first-order condition with respect to φ̃ would then imply that φ = A ≤ ρ
ρ+ρ̄ , and property (P)

would imply that Φ has to be non-negative. Therefore, Φ = 0, which implies φ = ρ
ρ+ρ̄ and χ(φ) = 0. When

instead A > ρ
ρ+ρ̄ , φ cannot be strictly larger than A: the first-order condition with respect to φ̃ would then

imply that Φ = 0, and property (P) would imply that φ = ρ
ρ+ρ̄ < A. Therefore, φ = A > ρ

ρ+ρ̄ , which implies

χ(φ) > 0.
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Setting ∆ ≡ a1 − ǎ1 and ∆i ≡ a2i − ǎ2i, we can write Φ and (4.3) as

Φ = ∆θbŝ0 +

N∑
i=1

∆iθiêi0, (A.56)

∆ηbŝ0 +

N∑
i=1

∆iηiêi0 = 0, (A.57)

Eqs. (4.1) and (4.4) imply that ∆ has the same sign as

[ρ− (ρ+ ρ̄)φ]θb+ (ρ+ ρ̄)χηb.

Likewise, (4.2) and (4.5) imply that ∆i has the same sign as

[ρ− (ρ+ ρ̄)φ]θi + (ρ+ ρ̄)χηi.

For φ = ρ
ρ+ρ̄ , χ(φ) = 0, and hence ∆ = ∆i = 0 and Φ = 0. For φ < ρ

ρ+ρ̄ ,

Φ = ∆θbŝ0 +

N∑
i=1

∆iθiêi0

> − (ρ+ ρ̄)χ(φ)

ρ− (ρ+ ρ̄)φ

(
∆ηbŝ0 +

N∑
i=1

∆iηiêi0

)
= 0,

where the second step follows by distinguishing cases according to the signs of ∆ and ∆i, and the third step

follows from (A.57). The inequality in the second step is strict. This is because θ is not proportional to η,

and hence the components of the vector [ρ − (ρ + ρ̄)φ]θ + (ρ + ρ̄)χη cannot all be zero. For φ > ρ
ρ+ρ̄ , the

same reasoning implies that Φ < 0. Therefore, property (P) holds. Note that property (P) implies that

when A > ρ
ρ+ρ̄ , the investor values the supply portfolio more than the manager: θŠ0 > θS0. This is because

θŠ0 − θS0 has the same sign as −Φ, which is positive when φ > ρ
ρ+ρ̄ .

Setting (φ̃, χ̃, ψ̃) = (φ, χ, ψ) in (A.47), (A.48), and (A.49), and using (A.42), we find that the coefficients

q1, q2i, and q0 when the investor offers the equilibrium contract (φ, χ, ψ) are

q1 =

√
(r + κ)2 + 2rρ((1− φ)θ + χη)bσ2

s − (r + κ)

σ2
s

− rρ((1− φ)θ + χη)ba1, (A.58)

q2i =

√
(r + κ)2 + 2rρ((1− φ)θi + χηi)σ2

i − (r + κ)

σ2
i

− rρ((1− φ)θi + χηi)a2i, (A.59)

q0 = −ρψ +
κ

r

(
q1s̄+

N∑
i=1

q2iēi

)
− 1 +

δ

r
+ log(r). (A.60)

The investor decides to employ the manager if (2.13) is satisfied. To derive the time-zero value function

Vu(W0, s0, e0) of the investor when he does not employ the manager, we can follow the same steps as when

she employs the manager, but with two modifications. First, we replace xη + z − φθ + χη by xη since the
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investor’s only exposure to the risky assets when he does not employ the manager is through the investment

x in the index. Second, we replace ψ̃ by zero because the investor does not offer a contract. The value

function is given by (A.40), with

q1u ≡
√

(r + κ)2 + 2rρxηbσ2
s − (r + κ)

σ2
s

− rρxηba1, (A.61)

q2iu =

√
(r + κ)2 + 2rρxηiσ2

i − (r + κ)

σ2
i

− rρxηia2i, (A.62)

q0u =
κ

r

(
q1us̄+

N∑
i=1

q2iuēi

)
− 1 +

δ

r
+ log(r), (A.63)

instead of q1, q2i, and q0, respectively. The investor’s optimization problem is

max
x

[
q1uŝ0 +

N∑
i=1

q2iuêi0

]
.

The investor decides to employ the manager if

max
φ̃,χ̃,x

(
q1ŝ0 +

N∑
i=1

q2iêi0

)
> max

x

(
q1uŝ0 +

N∑
i=1

q2iuêi0

)
. (A.64)

To show that (A.64) holds, we show that it holds when setting (φ̃, x) = (φ, 0) in the left-hand side. Using

(A.58), (A.59), (A.61), (A.62), and setting

f1(y) ≡
√

(r + κ)2 + 2rρyσ2
s − (r + κ)

σ2
s

− rρya1,

f2i(y) ≡
√

(r + κ)2 + 2rρyσ2
i − (r + κ)

σ2
i

− rρya2i,

for a scalar y, we can write the latter condition as

max
χ̃

[
f1

(
(1− φ)θb+

(
χ̃− χ
φ

+ χ

)
ηb

)
ŝ0 +

N∑
i=1

f2i

(
(1− φ)θi +

(
χ̃− χ
φ

+ χ

)
ηi

)
êi0

]

> max
x

[
f1(xηb)ŝ0 +

N∑
i=1

f2i(xηi)êi0

]
. (A.65)

The function f1(y) is concave and maximized for y given by

1√
(r + κ)2 + 2rρyσ2

s

− a1 = 0

⇔ y =
ρ̄

ρ+ ρ̄
θb,

where the second step follows from (3.2). Likewise, the function f2(y) is concave and maximized for y given
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by

1√
(r + κ)2 + 2rρyσ2

s

− a2i = 0

⇔ y =
ρ̄

ρ+ ρ̄
θi,

where the second step follows from (3.3). For any given x, we can write

(1− φ)θ +

(
χ̃− χ
φ

+ χ

)
η = λ

ρ̄

ρ+ ρ̄
θ + (1− λ)xη

by defining (λ, χ̃) by

λ
ρ̄

ρ+ ρ̄
≡ 1− φ,

(1− λ)x ≡ χ̃− χ
φ

+ χ.

Since 1 ≥ φ ≥ ρ
ρ+ρ̄ , λ ∈ [0, 1]. Therefore, the arguments of f1(y) and f2(y) in the left-hand side of (A.65) are

convex combinations of the corresponding arguments in the right-hand side and of the maximands of f1(y)

and f2(y). Concavity of f1(y) and f2(y) then implies that the values of f1(y) and f2(y) in the left-hand side

of (A.65) exceed the corresponding values in the right-hand side. Moreover, at least one of the inequalities is

strict. This is because θ is not proportional to η and hence the arguments of f1(y) and f2(y) in the right-hand

side of (A.65) cannot all coincide with the maximands of f1(y) and f2(y). Therefore, (A.65) holds.

Proof of Proposition 4.1. When A > ρ
ρ+ρ̄ , φ is equal to A and hence is increasing in A. Since χ(φ) is

increasing in φ, χ is also increasing in A.

Proof of Proposition 4.2. We first compute the derivatives of (a1, a2i, ǎ1, ǎ2i, Sit,E(Sit)) with respect to

A. Differentiating (4.1), (4.2), (4.4), and (4.5), and using φ = A, we find

∂a1

∂A
= −rρ̄a3

1

(
θ − ∂χ

∂A
η

)
bσ2
s , (A.66)

∂a2i

∂A
= −rρ̄a3

2i

(
θi −

∂χ

∂A
ηi

)
σ2
i , (A.67)

∂ǎ1

∂A
= rρǎ3

1

(
θ − ∂χ

∂A
η

)
bσ2
s , (A.68)

∂ǎ2i

∂A
= rρǎ3

2i

(
θi −

∂χ

∂A
ηi

)
σ2
i . (A.69)

Differentiating (4.3) with respect to A, and using (A.66)-(A.69) and (s0, e10, .., eN0) = (s̄, ē1, .., ēN ), we find

− (r + κ)
(
ρ̄a3

1 + ρǎ3
1

)(
θ − ∂χ

∂A
η

)
bσ2
sηbs̄− (r + κ)

N∑
i=1

(
ρ̄a3

2i + ρǎ3
2i

)(
θi −

∂χ

∂A
ηi

)
σ2
i ηiēi = 0

⇒ ∂χ

∂A
=

(
ρ̄a3

1 + ρǎ3
1

)
ηbθbσ2

s s̄+
∑N
i=1

(
ρ̄a3

2i + ρǎ3
2i

)
ηiθiσ

2
i ēi

(ρ̄a3
1 + ρǎ3

1) (ηb)2σ2
s s̄+

∑N
i=1 (ρ̄a3

2i + ρǎ3
2i) η

2
i σ

2
i ēi

. (A.70)
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Substituting ∂χ
∂A from (A.70) into (A.66) and (A.67), we find

∂a1

∂A
=

rρ̄a3
1

∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
ηj(ηbθj − θbηj)σ2

sσ
2
j ēj

(ρ̄a3
1 + ρǎ3

1) (ηb)2σ2
s s̄+

∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
η2
jσ

2
j ēj

, (A.71)

∂a2i

∂A
=
rρ̄
(
ρ̄a3

1 + ρǎ3
1

)
a3

2iηb(ηiθb− θiηb)σ2
sσ

2
i s̄+ rρ̄a3

2i

∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
ηj(ηiθj − θiηj)σ2

i σ
2
j ēj

(ρ̄a3
1 + ρǎ3

1) (ηb)2σ2
s s̄+

∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
η2
jσ

2
j ēj

.

(A.72)

Differentiating (A.1) with respect to A, we find that ∂Sit
∂A has the same sign as

∂a1

∂A
biŝt +

∂a2i

∂A
êit, (A.73)

and ∂E(Sit)
∂A has the same sign as

∂a1

∂A
bis̄+

∂a2i

∂A
ēi. (A.74)

When σs = 0, (A.71)-(A.73) imply that ∂Sit
∂A is negative if

θi
ηi
>

∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
ηjθjσ

2
j ēj∑N

j=1

(
ρ̄a3

2j + ρǎ3
2j

)
η2
jσ

2
j ēj

, (A.75)

and is positive if (A.75) holds in the opposite direction. This establishes the threshold result in the propo-

sition, with γ equal to the right-hand side of (A.75). Since γ is a weighted average of
θj
ηj

over j ∈ {1, .., N}
with the weights(

ρ̄a3
2j + ρǎ3

2j

)
η2
jσ

2
j ēj∑N

j′=1

(
ρ̄a3

2j′ + ρǎ3
2j′

)
η2
j′σ

2
j′ ēj′

that are positive and sum to one, (A.75) holds for i = arg max j∈{1,..,N}
θj
ηj

, and the opposite inequality holds

for i = arg min j∈{1,..,N}
θj
ηj

. Therefore, each inequality holds for a non-empty set of assets.

When (bi, ēi, σi, ηi) = (bc, ēc, σc, ηc) for all i, we can write (A.71) and (A.72) as

∂a1

∂A
=
rρ̄a3

1bcη
2
cσ

2
sσ

2
c ēc
∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

) (
Nθj −

∑N
j′=1 θj′

)
(ρ̄a3

1 + ρǎ3
1) b2cη

2
cN

2σ2
s s̄+

∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
η2
cσ

2
c ēc

, (A.76)

∂a2i

∂A
=
rρ̄
(
ρ̄a3

1 + ρǎ3
1

)
a3

2ib
2
cη

2
cNσ

2
sσ

2
c s̄
(∑N

j=1 θj −Nθi
)

+ rρ̄a3
2iη

2
cσ

4
c ēc
∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
(θj − θi)

(ρ̄a3
1 + ρǎ3

1) b2cη
2
cN

2σ2
s s̄+

∑N
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
η2
cσ

2
c ēc

,

(A.77)

respectively. We next show some properties of (a1, ǎ1). The expression ρ̄a3
2j + ρǎ3

2j decreases in θj because

of (4.2), (4.5), and φ = A ∈ ( ρ
ρ+ρ̄ , 1]. Using this observation and denoting by ā2 the value of ρ̄a3

2j + ρǎ3
2j for
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θ̄ ≡
∑N
j′=1

θj′

N , we find

N∑
j=1

(
ρ̄a3

2j + ρǎ3
2j

)Nθj − N∑
j′=1

θj′


=
∑
θj≤θ̄

(
ρ̄a3

2j + ρǎ3
2j

)
N(θj − θ̄) +

∑
θj>θ̄

(
ρ̄a3

2j + ρǎ3
2j

)
N(θj − θ̄)

<
∑
θj≤θ̄

ā2N(θj − θ̄) +
∑
θj>θ̄

ā2N(θj − θ̄)

=

N∑
j=1

ā2N(θj − θ̄) = 0. (A.78)

Equations (A.76) and (A.78) imply that ∂a1
∂A < 0. Since (A.66) and (A.68) imply that ∂a1

∂A and ∂ǎ1
∂A have

opposite signs, ∂ǎ1∂A > 0. Since, in addition, a1 = ǎ1 for A = ρ
ρ+ρ̄ (no frictions), a1 < ǎ1 for A ∈ ( ρ

ρ+ρ̄ , 1]. We

next show analogous properties of (a2i, ǎ2i) for i = arg max j∈{1,..,N} θj and i = arg min j∈{1,..,N} θj . For

i = arg max j∈{1,..,N} θj , (A.77) implies that ∂a2i
∂A < 0. Since (A.67) and (A.69) imply that ∂a2i

∂A and ∂ǎ2i
∂A

have opposite signs, ∂ǎ2i
∂A > 0. Since, in addition, a2i = ǎ2i for A = ρ

ρ+ρ̄ , a2i < ǎ2i for A ∈ ( ρ
ρ+ρ̄ , 1]. For

i = arg min j∈{1,..,N} θj , (A.77) implies that ∂a2i
∂A > 0. Therefore, repeating the previous argument, we find

a2i > ǎ2i for A ∈ ( ρ
ρ+ρ̄ , 1]. Since, in addition, a2j and ǎ2j decrease in θj , a2i = max{a2j , ǎ2j}j=1,..,N .

For i = arg max j∈{1,..,N} θj ,
∂a1
∂A < 0, ∂a2i∂A < 0, and (A.73) imply that ∂Sit

∂A < 0. For i = arg min j∈{1,..,N} θj ,

the second term in the numerator in (A.77) is positive. Denoting the numerator in (A.76) by N1, and the

first term in the numerator in (A.77) by N2, the term bcs̄N1 + ēcN2 is positive because

a3
1b

2
cη

2
cσ

2
sσ

2
c s̄ēc

N∑
j=1

(
ρ̄a3

2j + ρǎ3
2j

)Nθj − N∑
j′=1

θj′

+
(
ρ̄a3

1 + ρǎ3
1

)
a3

2ib
2
cη

2
cNσ

2
sσ

2
c s̄ēc

 N∑
j=1

θj −Nθi


> a3

1b
2
cη

2
cσ

2
sσ

2
c s̄ēc

N∑
j=1

(
ρ̄a3

2j + ρǎ3
2j

)Nθj − N∑
j′=1

θj′

+ (ρ̄+ ρ)a3
1a

3
2ib

2
cη

2
cNσ

2
sσ

2
c s̄ēc

 N∑
j=1

θj −Nθi


> a3

1b
2
cη

2
cσ

2
sσ

2
c s̄ēc

N∑
j=1

(
ρ̄a3

2j + ρǎ3
2j

)Nθj − N∑
j′=1

θj′

+ a3
1b

2
cη

2
cσ

2
sσ

2
c s̄ēc

N∑
j=1

(
ρ̄a3

2j + ρǎ3
2j

) N∑
j′=1

θj′ −Nθi


= a3

1b
2
cη

2
cσ

2
sσ

2
c s̄ēc

N∑
j=1

(
ρ̄a3

2j + ρǎ3
2j

)Nθj − N∑
j′=1

θj′ +

N∑
j′=1

θj′ −Nθi


= a3

1b
2
cη

2
cσ

2
sσ

2
c s̄ēcN

N∑
j=1

(
ρ̄a3

2j + ρǎ3
2j

)
(θj − θi) > 0,

where the first step follows from a1 < ǎ1 and the second from a2i = max{a2j , ǎ2j}j=1,..,N . Therefore, (A.74)

implies that ∂E(Sit)
∂A > 0.

The results on expected returns in both cases of the proposition follow by combining the results on prices

(which translate to expected prices) with (A.4) and (A.5).

Proof of Proposition 4.3. Differentiating (A.6) with respect to A, we find that ∂Var(dRit)
∂A has the same
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sign as

a1
∂a1

∂A
b2iσ

2
s s̄+ a2i

∂a2i

∂A
σ2
i ēi. (A.79)

Likewise, differentiating (A.7), we find that
∂Var

(
dRit
E(Sit)

)
∂A has the same sign as(

a1
∂a1

∂A
b2iσ

2
s s̄+ a2i

∂a2i

∂A
σ2
i ēi

)
(a1bis̄+ a2iēi)−

(
a2

1b
2
iσ

2
s s̄+ a2

2iσ
2
i ēi
)(∂a1

∂A
bis̄+

∂a2i

∂A
ēi

)
=

(
a1
∂a2i

∂A
− a2i

∂a1

∂A

)(
a2iσ

2
i − a1biσ

2
s

)
bis̄ēi. (A.80)

When σs = 0, (A.72) and (A.79) imply that ∂Var(dRit)
∂A is negative if (A.75) holds, and is positive if (A.75)

holds in the opposite direction. Likewise, (A.71), (A.72), and (A.80) imply that
∂Var

(
dRit
E(Sit)

)
∂A is negative if

(A.75) holds, and is positive if (A.75) holds in the opposite direction. These observations establish the

threshold results in the proposition. The same argument as in the proof of Proposition 4.2 implies that each

inequality holds for a non-empty set of assets.

Consider next the case (bi, ēi, σi, ηi) = (bc, ēc, σc, ηc) for all i. For i = arg max j∈{1,..,N} θj ,
∂a1
∂A < 0,

∂a2i
∂A < 0, and (A.79) imply that ∂Var(dRit)

∂A < 0. For i = arg min j∈{1,..,N} θj , the second term in the

numerator in (A.77) is positive. The term a1b
2
cσ

2
s s̄N1 + a2iσ

2
i ēcN2 (where N1 denotes the numerator in

(A.76), and N2 the first term in the numerator in (A.77)) is positive if (4.6) holds. This follows from N2 > 0

and because bcs̄N1 + ēcN2 is positive as shown in the proof of Proposition 4.2. Therefore, (A.79) implies

that ∂Var(dRit)
∂A > 0 if (4.6) holds. Moreover, (A.80) implies that

∂Var
(
dRit
E(Sit)

)
∂A > 0 if and only if (4.6) holds,

because of ∂a1
∂A < 0 and ∂a2i

∂A > 0.

Proof of Proposition 4.4. Differentiating (A.12) with respect to A, we find that
∂E(Sηt)
∂A has the same

sign as

∂a1

∂A
ηbs̄+

N∑
i=1

∂a2i

∂A
ηiēi. (A.81)

Equations (A.71) and (A.72) imply that (A.81) has the same sign as

a3
1ηbσ

2
s s̄

N∑
i=1

(
ρ̄a3

2i + ρǎ3
2i

)
ηi(ηbθi − θbηi)σ2

i ēi +
(
ρ̄a3

1 + ρǎ3
1

)
ηbσ2

s s̄

N∑
i=1

a3
2jηi(ηiθb− θiηb)σ2

i ēi

+

N∑
i=1

N∑
j=1

a3
2i

(
ρ̄a3

2j + ρǎ3
2j

)
ηiηj(ηiθj − θiηj)σ2

i σ
2
j ēiēj

= ρηbσ2
s s̄

N∑
i=1

(
a3

1ǎ
3
2i − ǎ3

1a
3
2i

)
ηi(ηbθi − θbηi)σ2

i ēi + ρ

N∑
i=1

N∑
j=1

a3
2iǎ

3
2jηiηj(ηiθj − θiηj)σ2

i σ
2
j ēiēj . (A.82)
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When σs = 0, the first term in (A.82) is zero. The second term can be written as

ρ

(
N∑
i=1

a3
2iη

2
i σ

2
i ēi

)(
N∑
i=1

ǎ3
2iηiθiσ

2
i ēi

)
− ρ

(
N∑
i=1

a3
2iηiθiσ

2
i ēi

)(
N∑
i=1

ǎ3
2iη

2
i σ

2
i ēi

)
,

and has the same sign as

∑N
i=1 ǎ

3
2iηiθiσ

2
i ēi∑N

i=1 ǎ
3
2iη

2
i σ

2
i ēi
−
∑N
i=1 a

3
2iηiθiσ

2
i ēi∑N

i=1 a
3
2iη

2
i σ

2
i ēi

. (A.83)

Both fractions in (A.83) are weighted averages of θi
ηi

over i ∈ {1, .., N} with weights that are positive and

sum to one. The weights are

w̌i ≡
ǎ3

2iη
2
i σ

2
i ēi∑N

j=1 ǎ
3
2jη

2
jσ

2
j ēj

for the first fraction, and

wi ≡
a3

2iη
2
i σ

2
i ēi∑N

j=1 a
3
2jη

2
jσ

2
j ēj

for the second fraction. When (σi, ηi) = (σc, ηc) for all i, the ratio

wi
w̌i

=
a3

2i

ǎ3
2i

∑N
j=1 a

3
2jη

2
jσ

2
j ēj∑N

j=1 ǎ
3
2jη

2
jσ

2
j ēj

of weights depends on i only through θi. It also decreases in θi because (4.2), (4.5), and φ ∈ ( ρ
ρ+ρ̄ , 1] imply

that
a32i
ǎ32i

decreases in θi. Denote by i∗ the asset that maximizes θi within the set of assets for which wi∗ ≥ w̌i∗ .
(That set is non-empty: wi < w̌i for all i ∈ {1, .., N} is not possible since

∑N
i=1 wi =

∑N
i=1 w̌i = 1.) Since

wi
w̌i

decreases in θi, it is larger than one for θi < θi∗ , and smaller than one for θi > θi∗ . Using this property,

we find

N∑
i=1

(w̌i − wi)
θi
ηc

=
∑
θi≤θi∗

(w̌i − wi)
θi
ηc

+
∑
θi>θi∗

(w̌i − wi)
θi
ηc

=
∑
θi≤θi∗

w̌i

(
1− wi

w̌i

)
θi
ηc

+
∑
θi>θi∗

w̌i

(
1− wi

w̌i

)
θi
ηc

>
∑
θi≤θi∗

w̌i

(
1− wi

w̌i

)
θi∗

ηc
+
∑
θi>θi∗

w̌i

(
1− wi

w̌i

)
θi∗

ηc

=
∑
θi≤θi∗

(w̌i − wi)
θi∗

ηc
+
∑
θi>θi∗

(w̌i − wi)
θi∗

ηc

=

N∑
i=1

(w̌i − wi)
θi∗

ηc
= 0. (A.84)

Therefore, (A.83) is positive and so is (A.82). When (σi, θi) = (σc, θc) for all i, we can follow the same steps

to show that (A.83) is again positive. The modifications are that wi
w̌i

and θi
ηi

depend on i only through ηi
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rather than only through θi,
wi
w̌i

increases in ηi rather than decreases in θi, and θi
ηi

decreases in ηi rather than

increases in θi.

When (bi, ēi, σi, ηi) = (bc, ēc, σc, ηc) for all i, the second term in (A.82) is positive because of the previous

argument. The first term can be written as

ρb2cη
3
cNσ

2
sσ

2
c s̄ēc

N∑
i=1

(
a3

1ǎ
3
2i − ǎ3

1a
3
2i

)Nθi − N∑
j=1

θj

 ,

= ρb2cη
3
cNσ

2
sσ

2
c s̄ēc

a3
1

N∑
i=1

(
ǎ3

2i − a3
2i

)Nθi − N∑
j=1

θj

+ (a3
1 − ǎ3

1)

N∑
i=1

a3
2i

Nθi − N∑
j=1

θj

 . (A.85)

The same argument as for equation (A.78) establishes that

N∑
i=1

a3
2i

Nθi − N∑
j=1

θj

 < 0.

Since, in addition, a1 < ǎ1, the second term in the bracket in (A.85) is positive. When θi can take only two

values, a2i > ǎ2i for the smaller value, and a2i < ǎ2i for the larger value, as shown in the proof of Proposition

4.2. Therefore, the first term in the bracket in (A.85) is positive, and so (A.82) is positive.

The results on expected returns in both cases of the proposition follow by combining the result on

expected prices with (A.4) and (A.5).

Proof of Theorem 5.1. We proceed in two steps, as in the proof of Theorem 4.1.

Step 1. Same as for Theorem 4.1, except that we do not impose the restriction φ ≥ A, and we replace Ḡt,

(A.31), and (A.39) by

Ḡt ≡ rρ̄
[
rW̄t + (φzt − χη)µt + ψ + (A− φ)mt −

B

2
m2
t − c̄t

]
+ κ

[
q̄1(s̄− st) +

N∑
i=1

q̄2i(ēi − eit)

]
,

mt =
A− φ
B

1{φ≤A},

q̄0 = ρ̄

(
ψ +

(A− φ)2

2B
1{φ≤A}

)
+
κ

r

(
q̄1s̄+

N∑
i=1

q̄2iēi

)
− 1 +

δ̄

r
+ log(r), (A.86)

respectively, where 1S is the indicator function of the set S.
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Step 2. Same as for Theorem 4.1, with the following changes. We replace Gt, (A.49), and (A.60) by

Gt ≡ rρ
[
rWt + (xη + z − φθ + χη)µt − ψ̃ − (1− φ̃)mt − ct

]
+ κ

[
q1(s̄− st) +

N∑
i=1

q2i(ēi − eit)

]
,

q0 = −ρ

(
ψ̃ +

(1− φ̃)(A− φ̃)

B
1{φ̃≤A}

)
+
κ

r

(
q1s̄+

N∑
i=1

q2iēi

)
− 1 +

δ

r
+ log(r), (A.87)

q0 = −ρ
(
ψ +

(1− φ)(A− φ)

B
1{φ≤A}

)
+
κ

r

(
q1s̄+

N∑
i=1

q2iēi

)
− 1 +

δ

r
+ log(r), (A.88)

respectively. The manager’s individual rationality constraint becomes

ψ̃ +
(A− φ̃)2

2B
1{φ̃≤A} ≥ 0,

and the investor chooses ψ̃ = − (A−φ̃)2

2B 1{φ̃≤A}. The investor’s optimization problem becomes

max
φ̃,χ̃,x

(
−ρ (A− φ̃)(2−A− φ̃)

2B
1{φ≤A} + q1ŝ0 +

N∑
i=1

q2iêi0

)
,

without the constraint φ̃ ≥ A. The first-order conditions with respect to χ̃ and x are equivalent to (4.3).

Using (A.53), we find that the first-order condition with respect to φ̃ is

1− φ
B

+
r

φ
Φ = 0 if φ < A, (A.89)

1− φ
B

+
r

φ
Φ ≥ 0 and Φ ≤ 0 if φ = A, (A.90)

Φ = 0 if φ > A. (A.91)

Equations (A.89)-(A.91) rule out that Φ is positive. When A ≤ ρ
ρ+ρ̄ , Φ cannot be negative: (A.91) would

then imply that φ ≤ A ≤ ρ
ρ+ρ̄ , and property (P) would imply that Φ has to be non-negative. Therefore,

Φ = 0, which implies φ = ρ
ρ+ρ̄ and χ(φ) = 0. When instead A > ρ

ρ+ρ̄ , φ cannot be strictly larger than A:

(A.91) would then imply that Φ = 0, and property (P) would imply that φ = ρ
ρ+ρ̄ < A. Moreover, φ cannot

be smaller than ρ
ρ+ρ̄ : (A.89) would then imply that Φ < 0, and property (P) would imply that φ > ρ

ρ+ρ̄ .

Therefore, φ ∈ ( ρ
ρ+ρ̄ , A], which implies χ(φ) > 0. Equations (A.89) and (A.90) yield (5.1) and (5.2). The

condition that the investor decides to employ the manager becomes

max
φ̃,χ̃,x

(
−ρ (A− φ̃)(2−A− φ̃)

2B
1{φ̃≤A} + q1ŝ0 +

N∑
i=1

q2iêi0

)
> max

x

(
q1uŝ0 +

N∑
i=1

q2iuêi0

)
(A.92)

instead of (A.64). Equation (A.92) is satisfied for B = 0, as shown in Theorem 4.1. It is also satisfied for

B =∞ because the left-hand side of (A.92) becomes identical to that of (A.64). By continuity, it is satisfied

for B close to zero and to infinity.

Proof of Proposition 5.1. The social planner maximizes the investor’s value function V (W0, s0, e0) at
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time zero, subject to the manager’s incentive compatibility (IC) and individual rationality (IR) constraints.

The IC constraint is that the manager’s choices of (zt,mt) are optimal given the contract. The IR constraint

is that the manager’s value function V̄ (W̄0, s0, e0) exceeds the value function V̄u(W̄0, s0, e0) from being

unemployed. From Steps 1 and 2 of the proof of Theorem 5.1, the social planner’s problem reduces to

maximizing

rρW0 + q0 + q1s0 +

N∑
i=1

q2iei0

subject to

rρ̄W̄0 + q̄0 + q̄1s0 +

N∑
i=1

q̄2iei0 ≥ q̄0u + q̄1us0 +

N∑
i=1

q̄2iuei0,

where (q0, q1, q21, .., q2N ) are given by (A.58), (A.59), and (A.88), (q̄0, q̄1, q̄21, .., q̄2N ) are given by (A.37),

(A.38), and (A.86), and (q̄0u, q̄1u, q̄21u, .., q̄2Nu) are the counterparts of (q̄0, q̄1, q̄21, .., q̄2N ) for an unemployed

manager. The values of (q̄0u, q̄1u, q̄21u, .., q̄2Nu) computed in Theorem 5.1 depend on (φ, χ). (In particular,

(q̄1u, q̄21u, .., q̄2Nu) = (q̄1, q̄21, .., q̄2N ).) This is because the manager computes his value function when un-

employed under the equilibrium prices, which depend on the contract. The values of (q̄0u, q̄1u, q̄21u, .., q̄2Nu)

computed by the social planner, however, do not depend on (φ, χ). This is because the social planner

internalizes that when the manager is unemployed, prices change and do not depend on the contract.

Using (A.86) and (A.88), we can write the social planner’s problem as

max
φ,χ

[
r(W0 + W̄0)− (A− φ)(2−A− φ)

2B
1{φ≤A} +

1

ρ

(
q1ŝ0 +

N∑
i=1

q2iêi0

)
+

1

ρ̄

(
q̄1ŝ0 +

N∑
i=1

q̄2iêi0

)]
. (A.93)

Since the investor and the manager are endowed collectively with the portfolio θ at time zero, the problem

(A.93) is equivalent to

max
φ,χ

[
rθS0 −

(A− φ)(2−A− φ)

2B
1{φ≤A} +

1

ρ

(
q1ŝ0 +

N∑
i=1

q2iêi0

)
+

1

ρ̄

(
q̄1ŝ0 +

N∑
i=1

q̄2iêi0

)]
. (A.94)

Using (A.58), (A.59),

q̄1 =

√
(r + κ)2 + 2rρ̄(φθ − χη)bσ2

s − (r + κ)

σ2
s

− rρ̄(φθ − χη)ba1, (A.95)

which follows from (4.1) and (A.37),

q̄2i =

√
(r + κ)2 + 2rρ̄(φθi − χηi)σ2

i − (r + κ)

σ2
i

− rρ̄(φθi − χηi)a2i, (A.96)

which follows from (4.2) and (A.38), and

Si0 = a1biŝ0 + a2iêi0,
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which follows from (A.1), we can write (A.94) as

max
φ,χ

[
− (A− φ)(2−A− φ)

2B
1{φ≤A}

+
1

ρ

(√
(r + κ)2 + 2rρ((1− φ)θ + χη)bσ2

s

σ2
s

ŝ0 +

N∑
i=1

√
(r + κ)2 + 2rρ((1− φ)θi + χηi)σ2

i

σ2
i

êi0

)

+
1

ρ̄

(√
(r + κ)2 + 2rρ̄(φθ − χη)bσ2

s

σ2
s

ŝ0 +

N∑
i=1

√
(r + κ)2 + 2rρ̄(φθi − χηi)σ2

i

σ2
i

êi0

)]
. (A.97)

The first-order condition with respect to χ is (4.3). The first-order condition with respect to φ is

1− φ
B

+ rΦ = 0 if φ < A, (A.98)

1− φ
B

+ rΦ ≥ 0 and Φ ≤ 0 if φ = A, (A.99)

Φ = 0 if φ > A. (A.100)

Since (A.97) is strictly concave, the first-order conditions characterize a unique maximum (φ∗, χ∗). Using

the same arguments as in the proof of Theorem 5.1, we find that (φ∗, χ∗, ψ∗) are as in the theorem.

We finally show that φ∗ ≥ φ and χ∗ ≥ χ for the privately optimal (φ, χ), with the inequalities being

strict when φ < A. Since χ∗ solves (4.3), it is equal to χ(φ∗) for the function χ(φ) defined in the proof of

Theorem 4.1. Since χ(φ) is increasing in φ, it suffices to show the inequalities for φ∗. When φ < A, φ is

determined by (A.89). Using (A.89), we can write the left-hand side of (A.98) as

1− φ
B
− φ(1− φ)

B
=

(1− φ)2

B
> 0.

Since the derivative of the social planner’s objective with respect to φ is positive at the privately optimal φ,

φ∗ > φ. When φ = A, φ satisfies (A.90). Using (A.90), we find that the left-hand side of (A.98) is larger

than (1−φ)2

B > 0. Since the derivative of the social planner’s objective with respect to φ is positive at the

privately optimal φ = A, φ∗ = φ = A.

Proof of Theorem 6.1. We follow the same steps as in the proof of Theorem 4.1.

Step 1. Equation (A.23) is replaced by

dRit = µitdt+ a1iσsdwst + a2iσidwit, (A.101)

which can be derived by substituting Sit from (2.14) into (2.2), and using (2.1), (6.1), and (6.2). The

manager’s Bellman equation (A.29) remains the same, except that (H̄t, K̄it) are replaced by

H̄t ≡

[
rρ̄

N∑
i=1

(φzit − χηi)a1i + q̄1

]
σs,

K̄it ≡ [rρ̄(φzit − χηi)a2i + q̄2i]σi.
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The first-order condition (A.102) is replaced by

rρ̄φµit − rρ̄φa1i

[
rρ̄

N∑
i=1

(φzit − χηi)a1i + q̄1

]
σ2
s − rρ̄φa2i [rρ̄(φzit − χηi)a2i + q̄2i]σ

2
i = 0. (A.102)

The terms (A0i, A1i, A2i, Q̄0, Q̄1, Q̄2i) are replaced by

A0i ≡ κ(a1is̄+ a2iēi)− ra0i − a1i

[
rρ̄

N∑
i=1

(φθi − χηi)a1i + q̄1

]
σ2
s −

N∑
i=1

a2i [rρ̄(φθi − χηi)a2i + q̄2i]σ
2
i ,

A1i ≡ bi − (r + κ)a1i,

A2i ≡ 1− (r + κ)a2i,

Q̄0 ≡ rq̄0 − rρ̄ψ − κ

(
q̄1s̄+

N∑
i=1

q̄2iēi

)
+ r − δ̄ − r log(r)

− 1

2

[
rρ̄

N∑
i=1

(φθi − χηi)a1i

]2

σ2
s −

N∑
i=1

1

2
[rρ̄(φθi − χηi)a2i]

2
σ2
i ,

Q̄1 ≡ (r + κ)q̄1 +
1

2
q̄2
1σ

2
s ,

Q̄2i ≡ (r + κ)q̄2i +
1

2
q̄2
2iσ

2
i .

Setting Q̄1 = Q̄2i = 0 yields q̄1 = q̄2i = 0. Setting A0i = A1i = A2i = 0 yields (6.3)-(6.5). Setting Q̄0 = 0,

and using (6.4) and (6.5), yields

q̄0 = ρ̄ψ − 1 +
δ̄

r
+ log(r) +

rρ̄2
[
[(φθ − χη)b]

2
σ2
s +

∑N
i=1(φθi − χηi)σ2

i

]
2(r + κ)2

. (A.103)

Step 2. The investor’s Bellman equation (A.44) remains the same, except that (Ht,Kit) are replaced by

Ht ≡ [rρ(xη + z − φθ + χη)ba1 + q1]σs,

Kit ≡ [rρ(xηi + z − φθi + χηi)a2i + q2i]σi.

The terms (Q0, Q1, Q2i) are replaced by

Q0 ≡ rq0 + rρψ̃ − κ

(
q1s̄+

N∑
i=1

q2iēi

)
+ r − δ − r log(r)

− rρ(xη + z − φθ + χη)ba1

[
rρ̄(φθ − χη)ba1 −

1

2
rρ(xη + z − φθ + χη)ba1 + q̄1 − q1

]
σ2
s

−
N∑
i=1

rρ(xηi + zi − φθi + χηi)a2i

[
rρ̄(φθi − χηi)a2i −

1

2
rρ(xηi + zi − φθi + χηi)a2i + q̄2i − q2i

]
σ2
i ,

Q1 ≡ (r + κ)q1 +
1

2
q2
1σ

2
s ,

Q2i ≡ (r + κ)q2i +
1

2
q2
2iσ

2
i .
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Setting Q1 = Q2i = 0 yields q1 = q2i = 0. Setting Q0 = 0, and using (6.4) and (6.5), yields

q0 = −ρψ̃ − 1 +
δ

r
+ log(r)

+
rρ(xη + z − φθ + χη)b

[
ρ̄(φθ − χη)b− 1

2ρ(xη + z − φθ + χη)b
]
σ2
s

(r + κ)2

+

∑N
i=1 rρ(xηi + zi − φθi + χηi)

[
ρ̄(φθi − χηi)− 1

2ρ(xηi + zi − φθi + χηi)
]
σ2
i

(r + κ)2
. (A.104)

If the investor decides to employ the manager, then she chooses a contract (φ̃, χ̃, ψ̃) and index investment x

to maximize q0 + q1s0 +
∑N
i=1 q2iei0. Using q1 = q2i = 0 and (A.104), and noting that the investor chooses

ψ̃ = 0 to meet the manager’s IR constraint ψ̃ ≥ 0 with equality, we can write the investor’s optimization

problem as

max
φ̃,χ̃,x

{
(xη + z − φθ + χη)b

[
ρ̄(φθ − χη)b− 1

2
ρ(xη + z − φθ + χη)b

]
σ2
s

+

N∑
i=1

rρ(xηi + zi − φθi + χηi)

[
ρ̄(φθi − χηi)−

1

2
ρ(xηi + zi − φθi + χηi)

]
σ2
i

}
,

subject to the constraint φ̃ ≥ A. The partial derivatives of the investor’s objective with respect to (φ̃, χ̃, x)

at (φ̃, χ̃, x) = (φ, χ, 0) are

[ρ− (ρ+ ρ̄)φ]
[
(θb)2σ2

s +
∑N
i=1 θ

2
i σ

2
i

]
+ (ρ+ ρ̄)χ

[
ηbθbσ2

s +
∑N
i=1 ηiθiσ

2
i

]
φ

, (A.105)

−
[ρ− (ρ+ ρ̄)φ]

[
ηbθbσ2

s +
∑N
i=1 ηiθiσ

2
i

]
+ (ρ+ ρ̄)χ

[
(ηb)2σ2

s +
∑N
i=1 η

2
i σ

2
i

]
φ

, (A.106)

− [ρ− (ρ+ ρ̄)φ]

[
ηbθbσ2

s +

N∑
i=1

ηiθiσ
2
i

]
− (ρ+ ρ̄)χ

[
(ηb)2σ2

s +

N∑
i=1

η2
i σ

2
i

]
, (A.107)

respectively. Because the investor’s optimization problem is concave, (φ̃, χ̃, x) = (φ, χ, 0) is an optimum if

(A.106) and (A.107) are equal to zero, and if (A.105) is non-positive when φ = A and is equal to zero when

φ > A. Setting (A.106) and (A.107) to zero yields (6.7). Using (6.7), we can write (A.105) as

[ρ− (ρ+ ρ̄)φ]

[
(ηb)2σ2

s +
∑N
i=1 η

2
i σ

2
i

] [
(θb)2σ2

s +
∑N
i=1 θ

2
i σ

2
i

]
−
[
ηbθbσ2

s +
∑N
i=1 ηiθiσ

2
i

]2
φ
[
(ηb)2σ2

s +
∑N
i=1 η

2
i σ

2
i

] . (A.108)

Since θ is not proportional to η, the Cauchy-Schwarz inequality implies that the denominator in (A.108) is

positive. Therefore, (A.108) has the same sign as ρ− (ρ+ ρ̄)φ. Property (P) in the proof of Theorem 4.1 is

thus satisfied, and the same argument as in that proof implies that φ is given by (6.6).

Proof of Proposition 6.1. Equation (6.3) implies that a0i > a0i′ . Since, in addition, (6.4) and (6.5)

imply that (a1i, a2i) = (a1i′ , a2i′), Sit > Si′t. Equations (A.23), which remains valid under OU processes,
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and E(Sit) > E(Si′t) imply that E(dRit) < E(dRi′t). Proceeding as in the derivation of (A.6), we find

Var(dRit) =
(
a2

1b
2
iσ

2
s + a2

2iσ
2
i

)
dt =

b2iσ
2
s + σ2

i

(r + κ)2
dt, (A.109)

where the second step follows from (6.4) and (6.5). Therefore, Var(dRit) = Var(dRi′t).

Proof of Proposition 6.2. Equations (6.3)-(6.5), (6.7), and φ = A imply that

∂Sit
∂A

=
ρ̄
[
bi
∑N
j=1 ηj(ηbθj − θbηj)σ2

sσ
2
j + ηb(ηiθb− θiηb)σ2

sσ
2
i +

∑N
j=1 ηj(ηiθj − ηjθi)σ2

i σ
2
j

]
(r + κ)2

[
(ηb)2σ2

s +
∑N
i=1 η

2
i σ

2
i

] . (A.110)

When σs = 0, the result follows as in the proof of Proposition 4.2. When (bi, ēi, σi, ηi) = (bc, ēc, σc, ηc)

for all i, the first term in the numerator in (A.110) is zero. The second and third terms are negative for

i = arg max j∈{1,..,N} θj , and positive for i = arg min j∈{1,..,N} θj . The results on expected returns in both

cases follow by combining the results on prices with (A.4). The share return variance of asset i is given by

(A.109) and hence does not depend on A. Multiplying (A.110) by ηi and summing across i, we find

∂Sηt
∂A

=
ρ̄
[
ηb
∑N
i=1 ηi(ηbθi − θbηi)σ2

sσ
2
i + ηb

∑N
i=1 ηi(ηiθb− θiηb)σ2

sσ
2
i +

∑N
i=1

∑N
j=1 ηiηj(ηiθj − ηjθi)σ2

i σ
2
j

]
(r + κ)2

[
(ηb)2σ2

s +
∑N
i=1 η

2
i σ

2
i

] .

(A.111)

Since the first two terms in (A.111) cancel and the third term is zero,
∂Sηt
∂A = 0.
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