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Abstract

We propose a rational model to explain time-series momentum. The key ingredient
is word-of-mouth communication, which we introduce in a noisy rational expectations
framework. Word-of-mouth communication accelerates information revelation through
prices and generates momentum. Social interactions allow investors with heterogeneous
trading strategies—contrarian and momentum traders—to coexist in the marketplace.
As a result, momentum is not completely eliminated, although a significant proportion
of investors trade on it. We also show that word-of-mouth communication spreads
rumors and generates price run-ups and reversals. Our theoretical predictions are in
line with several empirical findings.
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1 Introduction

One of the most pervasive facts in finance is price momentum. It is documented everywhere,
both across and within countries (Rouwenhorst, 1998) and asset classes (Asness, Moskowitz,
and Pedersen, 2013). It appears in the cross-section of returns, where it refers to securities’
relative performance (Jegadeesh and Titman, 1993), but also in the time-series of returns,
where it refers to a security’s own performance (Moskowitz, Ooi, and Pedersen, 2012).1

Price momentum challenges rational explanations—a rational theory for momentum
must provide a mechanism whereby momentum arises and persists as a profitable anomaly,
although investors can decide to trade on it. Behavioral theories therefore prevail.2 But the
wide prevalence of momentum suggests that a same behavioral trait cannot explain this
phenomenon across different markets. Furthermore, the weak link between momentum and
various measures of investor sentiment (Moskowitz et al., 2012) indicates that models based
on sentiment have yet to identify the main source driving momentum.

This paper provides a rational explanation of time-series momentum. Our building block
is a noisy rational expectations economy (Grossman and Stiglitz, 1980) in which a large
population of risk-averse agents trade a risky asset over several trading rounds. In this
standard setup, investors trade based on private information but also based on information
that is publicly broadcast through equilibrium prices. Our contribution is to introduce an
additional channel of information acquisition: we assume that private information diffuses
among the population of investors through word-of-mouth communication. Investors therefore
trade in centralized markets, but also search for each other’s private information—trading is
centralized, but information exchange is decentralized.

We model communication among agents through the information percolation theory
(Duffie and Manso, 2007), according to which agents exchange information in random, bilateral
private meetings. When embedded into a centralized trading model, information percolation
has two effects. First, as agents accumulate information through random meetings, the
average precision of information in the economy increases at an accelerated—exponential—
rate. Second, through these random meetings, agents acquire heterogeneous amounts of
information. The percolation mechanism therefore dictates both how the average precision
evolves over time and how individual precisions are distributed across agents.

The increase in average precision simultaneously improves the quality of investors’ in-
1Cross-sectional and time-series momentum are related, but distinct empirical anomalies. Notably,

Moskowitz et al. (2012) show that time-series momentum is not fully explained by cross-sectional momentum.
2According to these theories, momentum and reversal are explained by various behavioral biases. For in-

stance, momentum traders, conservative investors, and attribution bias generate momentum, while newswatch-
ers, representativeness heuristic, and overconfidence generate reversals. See Barberis, Shleifer, and Vishny
(1998), Daniel, Hirshleifer, and Subrahmanyam (1998) and Hong and Stein (1999).
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formation and reduces the risk of holding the stock. These two effects—information and
risk—jointly operate to produce momentum. To understand this, suppose the price is below
fundamentals. Because the average agent receives signals above the price, she concludes that
the stock is undervalued and exerts buying pressure. The price therefore increases towards
fundamentals. Meanwhile, as information becomes more precise over time, agents face less
risk for holding the asset. This gradually decreases the risk premium, causing the price to
increase on average. Overall, both the information and the risk effects jointly increase the
price, thereby creating momentum in stock returns.

The heterogeneity in individual precisions generates different trading strategies. Agents
who have little information rely more on public information broadcast through prices. Because
they observe momentum in prices, they find it optimal to trade on it. Instead, agents who
gather large amounts of information through random meetings build a strong knowledge of
the market and thus are in a good position to tell whether price changes reflect information
or noise. Consequently, they find it optimal to be contrarians and bet against the market.
Hence, while everyone—any agent, including an econometrician—observes momentum, not
everyone is a momentum trader and momentum thus appears as a profitable empirical
anomaly. Furthermore, information percolation constantly reshuffles the distribution of
individual precisions across the population and thus has implications for momentum timing.
For instance, some agents start by trading on momentum (riding the bubble) but bet against
it later to collect their gains.

An extension of our model shows that information percolation can also generate reversals.
The idea is that word-of-mouth communication is a natural propagator of rumors (Shiller,
2000). When private information contains a rumor, this rumor circulates among investors—
who are aware of its existence but cannot observe it—creating a disconnect between the stock
price and the fundamental. Ultimately, the rumor subsides and produces a price reversal.

Our model can explain several empirical findings. For instance, in our model the cost
of capital is decreasing in the precision of information. This prediction finds support in
the accounting literature (Lambert, Leuz, and Verrecchia, 2011). Furthermore, information
percolation creates a hump-shaped relationship between momentum returns and firm size
(Hong, Lim, and Stein, 2000). We also show that momentum in our model exhibits time-series
properties similar to those documented in Moskowitz et al. (2012) and Jegadeesh (1990). A
challenging finding for risk-based explanations is that momentum is a hedge for extreme
events (Moskowitz et al. 2012; Bandarchuk and Hilscher 2013), an additional feature that our
model can explain. Finally, in our model momentum is positively related to trading volume
(Lee and Swaminathan, 2000) and to disagreement (Zhang 2006; Verardo 2009).

We further analyze to what extent our results rely on our benchmark assumptions. We first
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show that momentum arises even for small magnitudes of noise trading. That is, noise trading
is a necessary ingredient for equilibrium existence (Grossman and Stiglitz, 1980), but not a
driver of our results. Furthermore, extending our model, we introduce a large, unconstrained,
risk-neutral arbitrageur who could conceivably eliminate momentum. We find that this is not
the case—the arbitrageur must also take into account the fact that her trades move prices
adversely. Finally, while we derive our results in a model with a finite horizon, we show that
they carry over to a fully dynamic setup. In particular, momentum obtains whether the asset
pays a single liquidating dividend or an infinite stream of dividends.

We believe that private exchange of information is linked to momentum for several reasons.
First, private information is an important driver of stock price variations (French and Roll,
1986) and provides an incentive for investors to implement heterogeneous trading strategies.
Public news, instead, do not predict prices (Roll, 1988), nor do they explain price changes
(Chan, Fong, Kho, and Stulz, 1996), nor do they generate trading heterogeneity.3 Second,
word-of-mouth communication is an innate channel of information processing, “a central part
of economic life” (Stein, 2008), and plays an important role in stock market fluctuations
(Shiller, 2000) and in investors’ decisions (Shiller and Pound, 1989).4 Further, evidence indeed
suggests that word-of-mouth communication is related to momentum.5

Leading rational theories of momentum are based on growth-options models (Berk, Green,
and Naik 1999; Johnson 2002; Sagi and Seasholes 2007). Our theory abstracts from firm
decisions and directly builds on information transmission as a driver of investors’ decisions and
thereby of stock returns. Previous rational-expectations models (Holden and Subrahmanyam
2002; Cespa and Vives 2012) suggest that an increase in information precision generates
momentum. In our model, this effect arises through word-of-mouth communication, which
further generates heterogeneity in information precision across agents. Finally, among well-
established explanations for momentum, Hong and Stein (1999) is the one most closely related
to this paper. In contrast to Hong and Stein (1999), agents in our model are rational, make
profits on average, and learn from prices—while these features would eliminate momentum
in Hong and Stein (1999), they create momentum and momentum trading in our model.
Moreover, we do not postulate momentum trading exogenously, but let investors optimally
decide whether to trade on momentum or not.6

3See also Mitchell and Mulherin (1994), Gropp and Kadareja (2007), Tetlock (2010), and Koudijs (2010).
4See also Grinblatt and Keloharju (2001), Hong, Kubik, and Stein (2004), Feng and Seasholes (2004),

Ivkovic and Weisbenner (2005), Brown, Ivkovic, Smith, and Weisbenner (2008), Shive (2010), and
Cohen, Frazzini, and Malloy (2008).

5Momentum profits are decreasing in analyst coverage, supporting the notion that momentum is caused by
slow information diffusion (Hong et al., 2000). See also Hou and Moskowitz (2005) and Verardo (2009).

6The theoretical literature on momentum is large. Other papers related to momentum, but unrelated to
social interactions and information diffusion, include Albuquerque and Miao (2014), Vayanos and Woolley
(2010), Makarov and Rytchkov (2009), Biais, Bossaerts, and Spatt (2010), and Wang (1993).
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2 Information Percolation in Centralized Markets

To model word-of-mouth communication among investors, we use the information percolation
mechanism of Duffie, Malamud, and Manso (2009). Specifically, we offer a model of centralized
trading (a noisy rational expectations equilibrium) and decentralized information gathering
(information percolation).

2.1 Information Setup

We build an economy with four trading dates, indexed by t = 0, 1, 2, 3, and a final liquidation
date, t = 4.7 The economy is populated by a continuum of investors indexed by i ∈ [0, 1].
There is a risky security with payoff Ũ realized at the liquidation date. The payoff of this
security is unobservable and follows a normal distribution with zero mean and precision H.8

Immediately prior to each trading session, each investor i obtains a private signal about
the asset payoff, z̃it:

z̃it = Ũ + ε̃it

where ε̃it is distributed normally and independently of Ũ , has zero mean, precision S, and is
independent of ε̃kj if k 6= i or j 6= t. The precision of private signals is constant over time and
is the same across investors.

We now introduce a mechanism whereby signal precisions increase over time and become
heterogeneous across agents. From date t = 0 onward, we assume that private information
diffuses across the population of agents through word-of-mouth communication. Between
time 0 and time 3, we assume that agents meet each other randomly. Meetings take place at
Poisson arrival times with intensity λ—the only parameter we add to an otherwise standard
equilibrium model.

When agents meet, they exchange their initial signal and other signals that they received
during previous meetings (if any). Agents are infinitesimally small and therefore are indifferent
between telling the truth or lie—if they attempt to lie, they will not be able to move prices,
and therefore will not benefit from their lies. For this reason, we assume that they tell the
truth. Moreover, because signals are normally distributed, an agent’s private information
is completely summarized by two numbers: her total number of signals and her posterior
expectation of the fundamental. These two numbers are what agents actually exchange when
they meet and “talk.”

7The number of four trading dates is the minimum necessary structure to show our effects; the model can
be easily extended to an arbitrary number of N trading dates.

8We refer to the precision of a random variable as the inverse of its variance.
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To illustrate how information percolation works, pick two agents—say D and J—out of
the crowd. D and J start with one signal. Suppose the first time they meet someone, they
meet each other. They exchange their signals truthfully and therefore end up with 2 signals
after the meeting. Suppose further that D meets someone else, say E who also has two signals
(i.e., E also met someone before). Since D and E are part of an infinite crowd of agents, the
person that E has met cannot be J , it must be someone else—i.e., meetings do not overlap.9

Hence, after the meeting, D and E both part with four signals each. Signals keep on adding
up randomly in the exact same way for every agent in the economy.

Meetings are idiosyncratic and therefore produce a rich heterogeneity of information
across agents—while agents start off holding one signal, they end up holding heterogeneous
numbers of signals as soon as they meet each other. This percolation-driven heterogeneity
is summarized by a cross-sectional distribution of the number of signals, πt. Formally, say
that between time t− 1 and t each agent i collects a number ωit of signals, including the one
received at time t, and excluding the signals received up to time t− 1. That is, for the rest of
this paper, when we mention the number of signals that an agent has at time t, we refer to
the number of additional signals, thus excluding the ones collected up to time t− 1.10

Since agents are initially endowed with a single signal, the initial distribution of signals has
100% probability mass at n = 1 and 0% probability mass at n > 1. As information diffuses
(at dates t > 0), the distribution πt takes positive values over N∗. For example, an agent who
did not meet anyone between t− 1 and t receives only one additional signal at t and thus is of
type n = 1. An agent who collected ten signals between t− 1 and t receives one more signal
at t and thus is of type n = 11, and so on. Following Duffie et al. (2009), the cross-sectional
distribution of the number of signals satisfies the following Boltzmann equation

d
dtπt(n) = λπt ∗ πt − λπt = λ

n−1∑
m=1

πt(n−m)µt(m)− λπt(n) (1)

where ∗ denotes the discrete convolution product and µ represents the cross-sectional dis-
tribution of the total number of signals, which we define in Appendix A.1. The summation
term on the right hand side in (1) represents the rate at which new agents of a given type are

9In other words, there is a zero probability that the set of agents that D has met before time t overlaps
with the set of agents that J has met before time t. This eliminates the concern that we are introducing
persuasion bias in the terms of Demarzo, Vayanos, and Zwiebel (2003): an agent might share her signals to
another agents who passes those signals at subsequent meetings to other agents and maybe the same signals
will come back to the first agent—without her knowledge. The infinite mass of agents prevents this double
accounting of signals to happen, since the probability for an agent to meet in the future precisely those agents
who got her signals is zero. Thus, for every pair (i, j) of agents, their signal sets are always disjoint.

10Notice that both the distribution over the total number of signals and the distribution over additional
signals may be equivalently used; we choose to use distribution of additional signals because it helps us better
separate and understand the effects of information percolation on the equilibrium price and trading strategies.
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created. The second term in (1) captures the rate at which agents leave a given type (e.g.,
when an agent of type 10 meets someone, she is no longer of type 10).

This setup has the advantage of leading to a closed-form solution for the cross-sectional
distribution πt of the number of signals. It is given in the following proposition, the proof of
which is provided in Appendix A.1.11

Proposition 1. The probability density function over the additional number of signals collected
by each agent between t− 1 and t, with t ≥ 1, is given by

π1(n) = e−nλ
(
eλ − 1

)n−1

π2(n) =
n−1∑
i=0

i∑
j=0

[(
i− 1
j − 1

)
1{i+j=n−1}e

−iλ−(j+1)λ
(
eλ − 1

)i]

π3(n) =
n−1∑
i=0

i∑
j=0

j∑
k=0

[(
i− 1
j − 1

)(
j − 1
k − 1

)
1{i+j+k=n−1}e

−(i+j)λ−(k+1)λ
(
eλ − 1

)i]

Figure 1 illustrates the evolution of the cross-sectional distribution πt(n) of signals for a
given value of the meeting intensity λ, at time 1 (upper panel) and time 2 (lower panel). The
distribution dynamics reflect an increase in both average precision and precision heterogeneity
over time. First, the mass of the distribution gradually shifts towards larger number of signals.
As a result, the average number of signals, and therefore the average precision, increases over
time. Second, while the distribution is initially concentrated at 1—each agent starts off with
one signal—it rapidly spreads to reflect the growing heterogeneity in precision across the
population. This heterogeneity itself varies through time, as Figure 1 shows.12

One potential concern is that agents get from their peers signals that have already been
used in previous trading sessions. The price therefore partially reflects this information—the
signal is partially “stale”. By the law of large numbers, however, the price only aggregates
information about the fundamental Ũ and idiosyncratic noise ε̃it in individual signals wipes
out in the aggregate. As a result, agents consider signals that they receive genuinely new,
even though their information content decreases over time.

11Although we present here closed-form solutions for the distribution of signals, we can also compute this
distribution numerically through inverse Fourier transform in a very efficient way. We provide the details on
the numerical procedure in Appendix A.1.2.

12Other aspects are worth noting. First, the probability mass at n = 1 stays constant for all periods (it
equals e−λ, roughly 37% in this case); these are investors who do not meet anyone during the last period and
consequently end up with only the usual signal received at the trading date. Second, at time 2 there is zero
probability mass for n = 2. The reason is that no investor could gather 2 additional signals between dates 1
and 2, since that would require meeting an investor with only one signal during that period, and no such
investor exists.
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Figure 1: Evolution of Cross-Sectional Densities
The Figure depicts the evolution of the probability density function of the number of additional
signals through time when agents are endowed with one signal at each period. Each graph
depicts π at time t = 1 and t = 2 , respectively, with λ = 1.

2.2 Equilibrium Prices

We embed the information percolation mechanism of the previous section within a rational-
expectations model à la Grossman and Stiglitz (1980). In this model of trading, information
diffuses both through prices and word-of-mouth communication.

2.2.1 Setup

Investors have exponential utility with common coefficient of absolute risk aversion 1/γ. The
asset payoff is realized and consumption takes place at time t = 4, while trading takes place
at times t = 0, 1, 2, 3. Each investor i is endowed at time t = 0 with a quantity of the risky
asset represented by X i. At each trading date, investor i chooses a position in the risky asset,
D̃i
t, to maximize expected utility of terminal wealth, denoted by W̃ i

4:

max
D̃it

E
[
e−

1
γ
W̃ i

4

∣∣∣∣F̃ i
t

]

subject to W̃ i
4 = X iP̃0 +

2∑
j=0

[
D̃i
j

(
P̃j+1 − P̃j

)]
+ D̃i

3

(
Ũ − P̃3

)

where F̃ i
t represents the information set of investor i at time t. This information set comprises:

(i) private signals received at each date and collected through the information percolation
mechanism described in Section 2, and (ii) prices (endogenously determined in equilibrium
and denoted by P̃t) as public signals.13

13Our model bears similarities with Brennan and Cao (1997), with the main difference that we embed an
information diffusion mechanism. We focus on a single asset economy, featuring several trading dates and
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The aggregate per capita supply of the risky asset at time t = 0, X̃0 =
∫ 1

0 X
idi, is normally

and independently distributed with zero mean and precision Φ. New liquidity traders enter
the market in trading sessions t = 1, 2, 3. The incremental net supply of liquidity traders, X̃t,
is normally distributed with zero mean and precision Φ.

The noisy supply prevents asset prices from fully revealing the final payoff Ũ . We postpone
a discussion of the noise trading assumption to Section 4.3. We adopt a random walk
specification for the noisy supply (or, equivalently, we assume that increments in noisy supply
are iid).14 Under this specification, any pattern in the correlation of returns depends only on
the time distribution of private information. We can, therefore, isolate the link between the
diffusion of information and the serial correlation of returns.15 Under this specification, our
results are not artificially driven by the persistence of noise traders’ demand.

The solution method for finding a linear, partially revealing rational expectations equilib-
rium is standard and is relegated to Appendix A.2. We describe the equilibrium below.

2.2.2 Equilibrium

We first introduce notation and terminology for further use. At each date t, agent i receives
ωit new signals. From Gaussian theory, it is sufficient to keep track of her average incremental
signal, a single signal with precision Sωit, which we denote by Z̃i

t :

Z̃i
t = Ũ + ε̃it, where ε̃it ∼ N

(
0, 1
Sωit

)

For convenience, we group all the information concerning the random variables in the
present setup in Table 1.

Variable Symbol Mean Precision Comments
Fundamental Ũ 0 H

Per capita supply X̃0 =
∫ 1
0 X

idi 0 Φ at date t = 0
Liquidity traders X̃t 0 Φ at date t = 1, 2, 3
Private signals Z̃i

0 = Ũ + ε̃i0 (for ε̃i0) 0 S at date t = 0
Private signals Z̃i

t = Ũ + ε̃it (for ε̃it) 0 Sωit at date t = 1, 2, 3

Table 1: Random variables in the present model

An important statistic in this economy is the cross-sectional average of the number of

a final liquidation date, in order to keep the setup comparable with leading momentum theories, such as
Daniel et al. (1998) and Hong and Stein (1999).

14i.i.d. incremental changes in noisy supply are likely to happen when time between consecutive trading
dates is small.

15Other specifications, such as an an AR(1) noise trading process, give qualitatively similar results.
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additional signals at time t, Ωt ≡
∑
ωt∈N πt (ωt)ωt, where πt (ωt) has been defined in Section 2.

At time 0, investors start with a single signal and therefore ωi0 = Ω0 = 1, ∀i ∈ [0, 1].
We finally define some variables from Theorem 1 below, needed for the description of the

equilibrium solution. The conditional precision of agent i about the final payoff Ũ , given
all available information (private and public signals), is denoted by Ki

t and defined in (4).
The cross-sectional average of conditional precisions over the entire population of agents is
denoted by Kt and defined in (3).

Theorem 1, the proof of which is given in Appendix A.2, describes the risky asset prices
at each date in a noisy rational expectations equilibrium with information percolation.

Theorem 1. There exists a partially revealing rational expectations equilibrium in the 4
trading session economy in which the risky asset price, P̃t, for t = 0, .., 3, is given by:

P̃t = Kt −H
Kt

Ũ −
t∑

j=0

1 + γ2SΩjΦ
γKt

X̃j (2)

where

Kt ≡
∑
ω∈N

Ki
t(ω)πt(ω) = H +

t∑
j=0

SΩj +
t∑

j=0
γ2ΦS2Ω2

j (3)

Ki
t ≡ Var−1

[
Ũ
∣∣∣F̃ i
t

]
= H +

t∑
j=0

Sωij +
t∑

j=0
γ2ΦS2Ω2

j . (4)

Equation (2) shows that the asset price is a linear function of the final payoff and supply
shocks, as is customary in the noisy rational-expectations literature. Furthermore, without
information percolation (λ = 0), we recover a standard rational-expectations equilibrium:
average precision is constant (Ωt = 1, ∀t) and there is no precision heterogeneity across
agents (Ki

t = Kt, ∀i, t). With information percolation (λ > 0) instead, average precision
increases over time and affects the price dynamics. We now analyze the implication of this
effect for the serial correlation of asset returns.

3 Information Percolation and Momentum

In our rational-expectations equilibrium model, the information flow through prices becomes
gradually more precise over time. As a result, expected returns and risk premia gradually
decrease over time, generating momentum in stock returns. In this section we explain how
word-of-mouth communication generates this effect and discuss evidence supporting the link
between information precision and risk premia.
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To measure momentum, we follow Banerjee, Kaniel, and Kremer (2009) and regress next-
period returns on last-period returns:

E[∆P̃t|∆P̃t−1] = cov(∆P̃t,∆P̃t−1)
var(∆P̃t−1)

∆P̃t−1 ≡ ρt∆P̃t−1. (5)

The coefficient ρt, the formula of which is given in Appendix A.3, dictates whether returns
exhibit momentum (ρ > 0) or reversal (ρ < 0).

3.1 Serial Correlation without Information Percolation

To understand how word-of-mouth communication affects returns, we first consider an economy
without social interactions and obtain the result highlighted in the proposition below, the
proof of which is available in Appendix A.3.

Proposition 2. In the absence of word-of-mouth communication among investors, returns
exhibit reversal.

Reversal is a standard result in noisy rational-expectations models; it originates from
inventory considerations (Grossman and Miller, 1988). Suppose we observe a price increase
today; either the stock is undervalued and informed investors exerted buying pressure, or noise
traders exerted noninformational buying pressure. In the former case, informed investors keep
buying the asset until its price exactly reflects its fundamental value and returns therefore
exhibit momentum—this is the information effect. In the latter case, informed investors act as
market makers and accommodate the increase in noninformational demand. Because they are
risk averse, they require a higher risk premium for holding the asset, which increases the asset
return for the next period, thus causing returns to exhibit reversal—this is the risk-aversion
effect. In standard models, the latter effect dominates and thus returns exhibit reversals.

3.2 Serial Correlation with Information Percolation

We now show how information percolation affects the tradeoff between information and
risk. Information percolation increases average precision over time, which reinforces the first
(information) effect: prices converge faster towards fundamental. Furthermore, an increase in
average precision reverts the second (risk-aversion) effect: less uncertainty decreases the risk
premium over time. Both effects jointly operate to generate momentum.

To see this, notice that prices in (2) have two parts. First, suppose that we know the
fundamental value Ũ of the asset (say it is Ũ = 1); we can then compute how prices converge
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to the fundamental on average

E[P̃t|Ũ ] =
(

1− H

Kt

)
Ũ ≡ TtŨ .

The coefficient T reflects the fundamental trend in prices. When there is no private information,
T = 0 and prices only reflect noise; when information is perfect, T = 1 and prices have fully
converged towards fundamental on average. When information is imperfect T ∈ [0, 1]: as
market learning improves, precision increases and the trend grows towards 1, causing prices
to converge towards fundamentals. We plot the fundamental trend T in the upper panel of
Figure 2.

The second part of prices represents a risk premium for holding the asset. The risk
premium acts as a discount on the price that increases (conditional) expected future returns
to compensate investors for bearing noise trading risk. Suppose that we observe the sequence
{X̃j}tj=0 of noise trading shocks; we can then compute how the risk premium θ evolves on
average:

E[P̃t|{X̃j}tj=0] = − 1
γKt

t∑
j=0

(1 + γ2SΩjΦ)X̃j ≡ −
t∑

j=0
θt,jX̃j

Say each supply increment is X̃t = 1. Then, the risk premium at time t equals θt = ∑t
j=0 θt,j.

We plot the risk premium for this particular case (X̃t = 1) in the lower panel of Figure 2.
The black lines in Figure 2 confirms our previous discussion regarding the case without

information percolation (λ = 0). In particular, price convergence towards fundamental is
slow—the information effect is weak—and the risk premium increases over time, causing
returns to exhibit reversal.

Introducing information percolation allows the market to become increasingly precise and
to learn faster. As a result, prices converge faster towards fundamentals and the information
effect becomes more pronounced, as illustrated by the dashed and dotted lines in the upper
panel. An increase in precision in turn alleviates risk-averse investors’ inventory concerns for
holding the asset. The risk premium therefore goes down and overturns the risk-aversion
effect, further contributing to momentum.

To provide further insight into the above discussion, consider the following example.
Suppose the price is below fundamentals. On average, agents (especially the better-informed
ones) receive signals above the price. As precision increases, an increasing fraction of investors
becomes aware that the stock is undervalued and exerts buying pressure, causing the price
to converge faster towards fundamentals. At the same time, buying the stock becomes less
and less risky due to the overall learning improvement and the risk premium goes down. The
information effect therefore offsets the usual risk-aversion effect, which generates reversal in
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Figure 2: Risk Premium and Fundamental Trend in Prices
The Figure depicts the fundamental trend in prices in the upper panel and the risk premium
in the lower panel, both as a function of time. Both are plotted for a meeting intensity of
λ = 0 (the black solid line), λ = 1 (the blue dotted line), and λ = 2 (the red dashed line).
The calibration is H = S = Φ = 1 and γ = 1

3 .

standard rational-expectations setups (Proposition 2).
Our model suggests that fluctuations in the risk premium are driven by the gradual increase

in information precision. That is, an increase in precision decreases the risk premium for
holding the asset. This mechanism is consistent with empirical findings. In particular, there is
a consensus in the accounting literature that increasing the precision of information reflected
in prices decreases the cost of capital (Lambert et al., 2011):16 when more information is
impounded into prices, expected returns are lower.

Empirically, several sources (other than information precision) drive risk premium fluctua-
tions. Among the most well-known sources of risk premium fluctuations are the dividend-price
ratio (Campbell and Shiller, 1988), dividend yields (Hodrick, 1992), the Fama and French
(1996) factors, the aggregate dividend payout ratio (Lamont, 1998), or the consumption-
aggregate wealth ratio (Lettau, 2001). These variables may lead to a “clustering” of expected
and realized returns, thereby producing momentum. It is, however, well-established that these
variables do not explain momentum (e.g., Lewellen and Nagel 2006; Nagel and Singleton
2011). The source of risk premium variation we identify—information precision—is seemingly
unrelated to these variables.

16See also Botosan, Plumlee, and Xie (2004), Francis, LaFond, Olsson, and Schipper (2005), Lambert et al.
(2011), and Amir and Levi (2014).
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Figure 3: Information Percolation and Serial Correlation in Returns
The Figure represents the serial correlation of returns as function of the meeting intensity
λ. Serial correlation is represented at time t = 1 (the solid blue line) and at time t = 2(the
dashed red line). The calibration is H = S = Φ = 1 and γ = 1
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We now study how the magnitude of momentum depends on the meeting intensity. To
do so, we plot the serial correlation for the first- (the solid blue line) and the second-period
returns (the dashed red line) as a function of the meeting intensity in Figure 3. The correlation
between two consecutive returns has the same sign as that of the coefficient ρt in (5) and is
more convenient to interpret.

The relation between momentum and the meeting intensity is hump-shaped. The increasing
part of this relation illustrates the momentum mechanism previously discussed. Without
information percolation and for low meeting intensities, risk-aversion dominates and returns
exhibit reversal. Taking the meeting intensity as a proxy for the trading frequency, this result
suggests that our model can explain reversal at short horizons (Lehmann, 1990; Nagel, 2012).
For higher values of the meeting intensity, average precision rises and both the information
and the risk-aversion effects jointly operate to produce momentum of increasing magnitude.

While information percolation generates momentum, its magnitude eventually declines for
large values of the meeting intensity. As word-of-mouth communication intensifies, average
precision spikes and prices initially reveal a large chunk of information. As a consequence,
prices almost immediately converge towards the fundamental—this effect is apparent in the
lower panel of Figure 2 (dashed red line)—and price fluctuations mainly reflect uncorrelated
noise trading increments. In the limit when the meeting intensity is infinite, all information is
revealed instantly and prices are martingales.

Overall, our model predicts a hump-shaped relation between momentum and the infor-
mation diffusion speed, consistent with the empirical finding of Hong et al. (2000). Using
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firm size as a proxy for information diffusion speed, they document a hump-shaped pattern
between firm size and the magnitude of momentum, similar to the one shown in Figure 3 (we
elaborate on this aspect in Section 5.1).

4 Momentum Trading

The purpose of this section is to analyze how information percolation affects investors’ optimal
trading strategy. An important feature of our model is that every investor observes momentum
from prices. We show that some investors profitably trade on momentum. This result raises
the following question: if momentum is a profitable anomaly and investors trade on it, why
does it persist? The key ingredient to address this question is the heterogeneity of information
endowments that information percolation generates. Because agents have heterogeneous
precisions they implement heterogeneous trading strategies—some are trend-followers, others
are contrarians and momentum is therefore not completely eliminated by momentum trading.

4.1 Momentum as a Profitable Empirical Anomaly

In this section, we show that technical analysis (i.e., momentum trading) works in our model
and that any investor can make profits by just following the trend. To do so, we take the view
of an econometrician (who has no information other than past and current prices) and study
whether a simple momentum strategy is profitable. We compute the expected cumulative
profits of a naive momentum strategy17 that starts at time 1 and consists in buying one unit
of the stock at time t if prices went up (∆P̃t > 0) or selling one unit of the stock if prices
went down (∆P̃t < 0):

Momentum Profits = E
[ 3∑
t=1

(
1∆P̃t>0 − 1∆P̃t<0

)
∆P̃t+1

]

We plot econometrician’s expected profits in Figure 4. For low meeting intensities, the
econometrician’s strategy performs poorly: returns exhibit reversal and a naive momentum
strategy is suboptimal. As information percolation accelerates, profits become positive and
their magnitude strongly relates to the magnitude of momentum (as depicted in Figure 3).
Taking the econometrician’s view therefore shows that momentum appears as a profitable

17In our model, agents choose optimal portfolios that are more sophisticated than this naive momentum
strategy (regardless of their information endowment), because they know the structure of the economy as
described in Theorem 1. They are therefore free to choose whether they are trend-chasers or contrarians. The
point that we want to make here is that momentum appears to the econometrician (who knows less than the
agents) as a profitable empirical anomaly.
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Figure 4: Profits of a Momentum Strategy as a Function of λ
The line represents the profits on a naive momentum strategy, performed by an econometrician,
as a function of the meeting intensity λ. The econometrician only observe prices and buys
one unit of the asset if prices went up or sells one unit of the asset if prices went down. The
calibration is H = S = Φ = 1 and γ = 1
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empirical anomaly and that any agent in this economy can take advantage of it by using
simple “technical trading” rules.

4.2 Momentum and Contrarian Trading

We now investigate which agents optimally trade on momentum in our model. We first
introduce additional variables, needed for the description of agents’ optimal trading strategy.

The conditional expectation of agent i about the final payoff Ũ is denoted by µ̃it and
defined in (6). We define two types of informational advantages in Eq. (7) below. First, ait
represents the marginal informational (dis)advantage arising from private signals gathered
from time t − 1 to t. Second, Ait represents the cumulative informational (dis)advantage
arising from private signals gathered from time 0 to t. These informational (dis)advantages are
relative measures, comparing the individual precision of investor i with the average precision
across the population of investors (marginal and cumulative). Finally, we normalize public
signals (prices) under the form (8).

Theorem 2, the proof of which is given in Appendix A.2, describes investors’ asset demands
at each date in our model.

Theorem 2. In the partially revealing rational expectations equilibrium of the 4 trading
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session economy, individual asset demands, D̃i
t, for t = 0, .., 3, are given by:

D̃i
t = γ

 t∑
j=0

(
SωijZ̃

i
j − SΩjQ̃j

)
− AitP̃t


where

µ̃it ≡ E
[
Ũ
∣∣∣F̃ i
t

]
= 1
Ki
t

t∑
j=0

[
SωijZ̃

i
j + γ2S2ΦΩjQ̃j

]
(6)

ait ≡ Sωit − SΩt, A
i
t ≡ Ki

t −Kt (7)

Q̃t ≡ Ũ − 1
γSΩt

X̃t (8)

The optimal trading strategy of the individual investor i at time t = 1, 2, 3, denoted by
∆D̃i

t ≡ D̃i
t − D̃i

t−1 takes the following form:

γ

[
ait
(
Z̃i
t − P̃t−1

)
+ SΩt

(
Z̃i
t − P̃t−1

)
− Kt

1 + γ2SΦΩt

(
P̃t − P̃t−1

)
− Ait

(
P̃t − P̃t−1

)]
(9)

4.2.1 Optimal Trading Strategies without Information Percolation

We first study the optimal trading strategies of Theorem 2 in an economy without information
percolation (λ = 0). In this case we have ωit = Ωt = 1, ait = Ait = 0, and Ki

t = Kt, for any
i ∈ [0, 1] and for t = 0, 1, 2, 3. As a result, the trading strategy in (9) only has two terms:

∆Di
t = γ

[
S
(
Z̃i
t − P̃t−1

)
− Kt

1 + γ2SΦ
(
P̃t − P̃t−1

)]
. (10)

The first term in Eq. (10) shows how investor i trades based on private information: if this
term is positive, her private signal indicates that the stock is undervalued and she therefore
increases her position in the asset. The more precise her signal is, the more aggressively
she buys. The second term shows how investor i trades based on public information: if this
term is positive, the price has increased and there is a chance that noise traders’ demand has
increased; hence the investor decreases her position to accommodate the supply.

Whether an agent focusses on private or public information determines how she trades. To
measure the trading behavior of investor i, we follow Brennan and Cao (1997) and take the
view of the econometrician. Because the econometrician does not observe supply shocks nor
private signals, she computes the expected trade of investor i conditional on the (observable)
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price change at time t, ∆P̃t:

E
[
∆D̃i

t

∣∣∣∆P̃t] = γSE
[
Z̃i
t − Q̃t

∣∣∣∆P̃t]
= γSE

[
Ũ + ε̃it − Ũ + 1

γS
X̃t

∣∣∣∣∣∆P̃t
]

= E
[
X̃t

∣∣∣∆P̃t]
= mt∆P̃t

(11)

The sign of the coefficient mt determines the investment style. When this coefficient is positive,
an agent tends to buy after price increases and sell after price decreases. The econometrician
therefore concludes that the agent is a momentum trader. Conversely, when mt is negative,
the econometrician concludes that the agent is a contrarian. This leads to the following result.

Proposition 3. In an economy without information percolation, all informed investors adopt
contrarian strategies, i.e., their trades are negatively correlated with the current price change.

Proof. Following from (2) and (11), the conditional expected trade can be written as

E
[
∆D̃i

t

∣∣∣∆P̃t] = −1 + γ2SΦ
γKt

var
(
X̃t

)
var

(
∆P̃t

)
︸ ︷︷ ︸

mt

∆P̃t

It is straightforward to see that mt < 0. Thus, all investors are contrarians. �

Proposition 3 has the following implication: suppose one can generate momentum with
homogenous information endowments, then no agent would trade on it. This result is
unsatisfactory in two respects. First, a theory for momentum without momentum trading
is incomplete, because it cannot explain why momentum persists as a profitable anomaly.
Second, this result is at odds with the empirical finding of Moskowitz et al. (2012) that
“speculators’ position load positively on time series momentum, while hedgers’ positions load
negatively on it”. Although momentum may arise in a standard rational expectations model
(as we show in Section 6.1), we must yet explain why some traders engage in momentum
trading and others in contrarian trading. Below we show how information percolation helps
generate this prediction.

4.2.2 Optimal Trading Strategies with Information Percolation

In this section we analyze the effect of information percolation on the optimal trading strategies
of Theorem 2. Information percolation generates heterogeneous precisions across investors,
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as we show in Section 2. As a result, some agents now have a marginal or a cumulative
informational (dis)advantage (a and A, respectively) with respect to the average agent in the
economy. The first and the last term in Eq. (9) will therefore cause investors’ optimal trading
strategy to differ through the diversity of informational advantages.

To understand how information percolation operates on informational advantages, consider
first an investor who currently meets someone with many signals—this investor receives “hot
information” and therefore has a large marginal informational advantage. Because this hot
information significantly increases her current precision, she wants to trade aggressively on it.
If this hot information reveals that the stock is undervalued, she increases her position in the
stock through the first and second terms in Eq. (9). These terms therefore cause an agent to
be a momentum trader.18

Now consider an investor who has met many agents in the past—this investor has a large
cumulative informational advantage. Because this investor has built a strong knowledge of
the market, she is able to better infer supply shocks from the price signal and thus trades
more aggressively on public information. If she observes a stock price increase, she decreases
her position in the stock to accommodate noise traders’ demand through the third and last
terms in Eq. (9). These terms therefore cause an agent to be a contrarian.

To illustrate the tradeoff between momentum and contrarian trading, we plot the hetero-
geneity of “investment styles”, m1, at time t = 1 for different values of the meeting intensity
λ in Figure 5 (studying investment styles at time t = 1 is convenient because marginal and
cumulative informational (dis)advantages coincide). Using the probability density function
defined in Section 2, we then consider two investor types: (i) the 5% percentile least informed
investor (dotted red line) and (ii) the 95% percentile best informed investor (dashed blue
line).19 The shaded area between the 5% percentile and 95% percentile therefore captures
90% of the investor population.

Shutting down information percolation (λ = 0), there is no trading heterogeneity and all
informed investors are contrarians, the result of Proposition 3. When λ is positive, however,
investors adopt heterogeneous trading strategies: Figure 5 shows that, as λ increases, there
is an expanding spectrum of trading strategies. Importantly, for higher meeting intensities,
some investors have sufficiently large marginal informational advantages to trade aggressively
on their private information—these investors become momentum traders (dark gray area).

This result demonstrates that informed agents do not only trade against noise traders, but
also trade against each other. To see this, notice that noise traders act as momentum traders.

18It can be easily shown that Z̃it − P̃t−1 is positively correlated with ∆P̃t.
19As Proposition 3 shows, the average informed investor is contrarian. The reason is that noise traders are

momentum traders and the average informed investor must take the other side of the market. We focus the
analysis on informed agents who trade optimally on their information.

19



0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

95
%
pe
rce
nti
le

Ave
rage

5% percen
tile

Momentum
trading

Contrarian
trading

Meeting intensity λ

m
1

Figure 5: Information Percolation and Heterogeneous Trading Strategies at t = 1
The Figure depicts the coefficient of the price difference ∆P̃t in the expectation E

[
∆D̃i

1

∣∣∣∆P̃1
]

at time t = 1, i.e., m1. A positive coefficient means momentum trading, whereas a negative
coefficient means contrarian trading. There are three lines. The black solid line corresponds
to the average informed investor, the red dotted line corresponds to the 5% percentile less
informed investor, and the blue dashed line corresponds to the 95% percentile better informed
investor. Thus, the gray area represents 90% of the population of investors. The sign of the
“investment style coefficient” m1 defines momentum or contrarian trading.

Informed investors must in turn act as contrarians for markets to clear. Without information
percolation, this observation implies that all informed investors must be contrarians (Proposi-
tion 3). When agents have heterogeneous precisions, however, some investors, besides noise
traders, can also be momentum traders. Information percolation therefore provides a richer
description of trading.

Overall, information percolation determines endogenously who is a momentum trader
and who is a contrarian. In our model momentum traders are agents who either possess
hot information or have little knowledge of the market and attempt to free ride on others’
information. Instead contrarians are agents who either have a strong knowledge of the market
or received little fresh information.

This conclusion is consistent with empirical findings. On the one hand, speculators—who
presumably possess “hot information”—benefit from momentum as their fundamental informa-
tion gets incorporated into prices (Moskowitz et al., 2012).20 Similarly, mutual fund flows (Lou

20See also Kelley and Tetlock (2013b): retail short selling negatively predicts returns, fully consistent with
the hypothesis that retail short sellers are well-informed. Also, retail market orders indeed convey, and benefit
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2009; Akbas, Armstrong, Sorescu, and Subrahmanyam, 2014)—who presumably have little
knowledge of the market and delegate their portfolio—chase past performance and further
exacerbate market anomalies. On the other hand, specialists (Hendershott and Seasholes,
2007) and commercial investors, or hedgers, (Moskowitz et al., 2012)—who presumably have
a broad experience on how the market operates—are contrarians and liquidity providers.

4.2.3 Information Percolation and Momentum Timing

We now study how information percolation affects trading strategies dynamically. We plot
investment styles at time t = 2 in Figure 6. At time t = 2, marginal and cumulative advantages
need not coincide—some investors can now have a marginal advantage but not a cumulative
one, and vice-versa.

Consider first an investor who was relatively less informed at time 1 (panel (a)). When the
meeting intensity is high, there is a high chance that she gets a large marginal advantage at
time 2. Consequently most investors who had a low informational advantage at time 1—who
were contrarians—adopt trend following strategies at time 2. On the contrary, panel (c) shows
that an investor who was well informed at time 1—who was a momentum trader—becomes a
contrarian at time 2. The reason is that a large marginal advantage at time t = 1 converts to
a large cumulative informational advantage at time t = 2. Hence, it is likely that at time t = 2
her cumulative advantage overwhelms her marginal advantage. Finally, panel (b) shows that
the average agent—who is necessarily contrarian at time t = 1 due to market clearing—may
become a momentum trader at time t = 2 if she receives hot information. Market clearing,
however, requires that on average she remains a contrarian.

In conclusion, the timing of information suggests that there is an optimal “momentum
timing” strategy. Investors who receive “hot information” early on have a timing advantage
and can bet on momentum when it is most profitable to do so. On average, they choose to
“ride the bubble” first and bet against it near the end of the run-up. Instead, investors who
received information later on are likely to be late momentum traders.

4.3 Noise Trading and Momentum

In the previous section, we have analyzed the trading strategies of informed investors. But
informed investors do not only trade among themselves—if an agent knew she was trading with
another informed agent, she would not trade. Noise is therefore an essential ingredient (Black,
1986). There are many reasons that can generate noise trading in financial markets—labor
income (human capital), political uncertainty, natural disasters or predictable life cycle needs,

from, fundamental information (Kelley and Tetlock, 2013a).
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Figure 6: Information Percolation and Heterogeneous Trading Strategies at t = 2
The Figure depicts the same coefficient as in Figure 5, at time 2, i.e., m2. The lines are the
same as in Figure 5. Panel (a) is for the trader who at time 1 was the 5% less informed
investor, panel (b) is for the trader who at time 1 was the average investor, and panel (c) is
for the trader who at time 1 was the 95% better informed investor.

but also less predictable events such as job promotions or unemployment, deaths or disabilities,
or myriad other causes (Glosten and Milgrom, 1985). Due to these risks, there will always be
noninformational trades.21

In this section, we elaborate on the role of noninformational trades for our results. In
particular, we investigate how much noise trading is necessary to generate momentum.

We focus on momentum at time t = 1 and observe that the minimum meeting intensity,
λ, above which there is momentum satisfies

λ = log
(

1 + H

S + S2γ2Φ

)
.

This threshold is decreasing in the precision of noise trading, which implies that less noise
helps generate momentum. In other words, if liquidity provision is not too important, better
information translates into momentum.

For a given meeting intensity, decreasing the magnitude of noise has two effects. On
the one hand, less noise increases the magnitude of momentum by lowering the threshold
λ. On the other hand, less noise decreases momentum by allowing more information to be
revealed through prices. To understand which effect dominates, we fix the meeting intensity

21Noise can also result from the allocational role of financial markets (Grossman, 1995).
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and plot the serial correlation of returns as a function of noise precision in Figure 7. Each
line corresponds to a different meeting intensity.

For low meeting intensities, increasing noise precision—reducing noise—allows momentum
to arise (the red line)—in this case, the first effect dominates. As we further increase the noise
precision, the second effect eventually dominates and decreases the magnitude of momentum.
For higher meeting intensities, the second effect always dominates and momentum decreases
with noise (the dashed blue line). Overall, we need noise to generate momentum, but the
noise magnitude need not be important. In particular, we can generate momentum with an
arbitrarily small supply shock, provided that the meeting intensity is sufficiently large—even
small supply shocks create reversals and this effect must be undone through the percolation
mechanism we described.

Although momentum arises even for small magnitudes of the noisy supply, we would like
to know how much momentum our model generates with a noise precision that is empirically
reasonable. To do so, we borrow a calibration from the literature. Banerjee (2010) calibrates
a rational-expectations model on S&P 500 data to match monthly returns on the Fama French
three factors over the period from January 1983 to December 2008 and finds the precision
of supply shocks to be roughly three times higher than the precision of dividend shocks. In
our case, this would imply Φ = 3. Using this precision value and a meeting intensity of one
meeting per month, we are now looking at the point that is highlighted in a yellow box in
Figure 7. This point shows that our model can generate momentum of roughly 5% magnitude
with relatively little noise and a low meeting intensity.
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4.4 Uncontrained, Uninformed, Risk-Neutral Arbitrageur

In our model, noise traders create a source of risk. Because informed investors are risk
averse, they do not fully extract momentum in stock returns. A risk-neutral, unconstrained
arbitrageur—even uninformed—could therefore enter the market and collect the remaining
gains (i.e., eliminate momentum). To eliminate momentum, this arbitrageur must necessarily
be large enough so that her trades impact prices. The arbitrageur therefore faces a tradeoff
between trading aggressively on momentum and moderating her price impact. As a result,
she optimally decides not to eliminate momentum completely. The main conclusion is
that momentum remains quantitatively significant, even in the presence of a risk-neutral,
unconstrained, uninformed arbitrageur.

We introduce a large arbitrageur who has an endogenous price impact λt > 0 for trading
x̃t shares of the stock at time t; accordingly, we conjecture that the stock price now writes

P̃t = ϕtŨ +
t−1∑
j=0

ξj,tQ̃j − γtX̃t + λtx̃t
(
{Q̃j}tj=0

)

where ϕ, ξ, and γ are coefficients to be solved in equilibrium. Because the arbitrageur is
uninformed (she only observes prices), her strategy is observable and the price signal now
writes22

Q̃t = 1
ϕt

P̃t − t−1∑
j=0

ξj,tQ̃j − λtx̃t
(
{Q̃j}tj=0

) .
Finally, the risk-neutral, unconstrained arbitrageur maximizes expected profits:

max
x̃t

E

XP̃0 +
2∑
j=0

[
x̃j
(
P̃j+1 − P̃j

)]
+ x̃3

(
Ũ − P̃3

)∣∣∣∣∣∣ {Q̃}tj=0

 .
The presence of the arbitrageur leads to complicated, but closed-form solutions for prices

and optimal demands; for convenience, Theorem 3, the proof of which is given in Appendix
A.4, reports their shortened expressions.

Theorem 3. There exists a partially revealing rational expectations equilibrium in the 4
trading session economy in which the price signal, Q̃t, for t = 0, .., 3, satisfies

Q̃t = Ũ − 1
rSΩt

X̃t

22If the arbitrageur deviates from this strategy, informed traders could not detect the deviation and would
attribute it to noise traders, which gives the arbitrageur an incentive to distort the price signal Q̃t. Because
this possibility entails significant complications that are immaterial to the point we want to make, we simply
discard it.
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and in which the arbitrageur’s demand x̃t satisfies

x̃t = 1
2λt

E [P̃t+1|{Q̃j}tj=0

]
− ϕtQ̃t −

t−1∑
j=0

ξj,tQ̃j

 . (12)

The price coefficients satisfy

ϕt = At−rS
∑t−1

j=0 Ωj
Dt

, ξj,t = Bj,t+rSΩj
Dt

, γt = Ct+1
Dt

, λt = 1
Dt

where A, Bj, C, and D correspond to the coefficients of the aggregate demand of informed
traders

∫
ωit

D̃i
t = AtŨ +

t−1∑
j=0

Bj,tQ̃j − CtX̃t −DtP̃t.

The arbitrageur trades on momentum but does not fully eliminate it. To see this, we
rewrite her demand in (12) as

λtx̃t = E
[
P̃t+1 − P̃t|{Q̃j}tj=0

]
. (13)

The expression on the right-hand side of (13) is the measure of momentum we have used in
the previous sections.23 Hence, the magnitude of momentum in the model is directly pinned
down by the left-hand side of (13). The arbitrageur is a momentum trader when returns
exhibit momentum and a contrarian when returns exhibit reversal. Conversely, returns exhibit
momentum (or reversal) only if she trades on it.24

The arbitrageur can only make profits if she allows momentum to persist. She therefore
optimally forgoes profits. To illustrate this, we compute the unconditional profits Π she
expects to make between time t and t+ 1. In particular, simple computations show that

Π = E
[
x̃t
(
P̃t+1 − P̃t

)]
= 1
λt
E
[(
E
[
P̃t+1 − P̃t|{Q̃j}tj=0

])2
]

= λtE
[
x̃2
t

]
.

We then compare these profits to those of the econometrician of Section 4.1. The econometrician—
who is not strategic—actually trades according to (13), but ignores price impact (λt ≡ 1). The
profits that the arbitrageur optimally forgoes to keep momentum in the model are therefore

23Our measure of momentum is based on a coarser set of information. In the present context, it satisfies

E
[
P̃t+1 − P̃t|P̃t − P̃t−1

]
= λtE

[
x̃t|P̃t − P̃t−1

]
.

24If the arbitrageur had no price impact (i.e., λt = 0), her traders would be infinite and she would eliminate
momentum in the limit.
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Figure 8: Profits of the Arbitrageur as a Function of λ
The solid line represents the total profits on momentum in the model, as a function of the
meeting intensity λ. The dashed line represents the profits made by the arbitrageur. The
shaded area represents the profits that arbitrageur forgoes. The calibration is H = S = Φ = 1
and γ = 1
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given by

Π′ = E
[(
E
[
P̃t+1 − P̃t|{Q̃j}tj=0

])2
]
− Π =

(
1− 1

λt

)
E
[(
E
[
P̃t+1 − P̃t|{Q̃j}tj=0

])2
]
.

We plot the profits she makes and the profits she forgoes at time t = 1 in Figure 8.
For low meeting intensities, Figure 8 shows that the arbitrageur extracts half of the

momentum rents, consistent with the behavior of a monopolist. As the meeting intensity
increases, however, the momentum profits she forgoes significantly increase. The reason is
that she now trades against agents who are better informed on average; accordingly, she
has a larger price impact and therefore trades less aggressively on momentum. We conclude
that it is difficult to arbitrage away momentum in a market characterized by fast diffusion of
information among investors.

We finally show that momentum remains quantitatively significant. We plot momentum
at time t = 1 and t = 2 in Figure 9. Comparing the magnitude of momentum in Figure 3 and
9, we observe that the arbitrageur eliminates about half of the momentum in stock returns.
Momentum also requires a higher meeting intensity to arise.
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Figure 9: Serial Correlation in Returns with a Risk-Neutral Arbitrageur
The first and the second panel represent the serial correlation of returns and the fraction of
momentum traders, respectively. Each is represented at time t = 1 (the solid blue line) and
at time t = 2(the dashed red line). The calibration is H = S = Φ = 1 and γ = 1
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5 Testable Theoretical Predictions

In this section we show that information percolation produces a set of empirically-relevant
predictions. In particular, the empirical literature finds that momentum differs for stocks
with certain characteristics,25 momentum exhibits a non-linear term structure pattern,26

and momentum is positively related to other economic variables such as past volatility, past
trading volume, and disagreement.27 Further, stock returns exhibit strong reversals at horizons
shorter or equal to one month.28 While some of these findings challenge existing theories of
momentum, many of them are in line with our explanation. We analyze each one in turn.

5.1 Cross-sectional and time-series properties of momentum

Empirical findings suggest that the magnitude of momentum varies across different types of
firms. In particular, Hong et al. (2000) use firm size as a proxy for the speed of information
diffusion and document a hump-shaped relation between firm size and the magnitude of
momentum.

As Figure 3 illustrates, our model predicts a hump-shaped relation between momentum and
the meeting intensity λ. For a low meeting intensity the model generates reversals.29 Then,
as the meeting intensity increases stock returns exhibit momentum. Finally, the magnitude

25Hong et al. (2000), Hou, Peng, and Xiong (2006), Daniel and Titman (2000).
26Hong, Hong, and Ungureanu (2010), Moskowitz et al. (2012).
27Bandarchuk and Hilscher (2013), Lee and Swaminathan (2000), Zhang (2006), Verardo (2009).
28Jegadeesh (1990), Lehmann (1990).
29Hong et al. (2000) indeed suggest that these reversals are driven by liquidity shocks. See French and Roll

(1986) for further evidence on this.
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of momentum decays for larger meeting intensities, as prices converge almost instantly to
the fundamental. Taking λ as a proxy for firm size, a hypothetical version of our model with
multiple firms would therefore generate a cross-sectional pattern of momentum similar to that
documented by Hong et al. (2000). In that respect, the non-linear dynamics of percolation
lead to a hump-shaped pattern of momentum that coincides with that found empirically in
the cross-section of stock returns.30

The magnitude of momentum varies across different lookback periods used to build
the momentum strategy. Specifically, Moskowitz et al. (2012) find that the magnitude of
momentum is large for short lookback periods (one to six months) and usually decays as the
lookback period increases, with weak or no evidence of momentum for periods longer than 12
months.31

Information percolation bears similar time-series implications. A feature of our model
is that the average precision of information increases over time, as shown in Proposition 1.
Thus, different speeds of information diffusion can generate different patterns of momentum
magnitude with respect to the length of the lookback period. To show this, we perform the
following exercise. We consider a version of our model with more than four trading periods
and compute momentum using results from Theorem 1, which can be easily extended to N
trading periods.

In Figure 10, we plot the serial correlation of returns for looback periods ranging from one
to eleven months and for a meeting intensity of λ = 1. As the speed of information diffusion
increases, the model can generate momentum at short horizons. Momentum then decays as
the length of the lookback period increases. For lookback periods larger than four months,
momentum vanishes.32

At frequencies less than one month, stock returns exhibit strong reversals, as shown by
Lehmann (1990) and Jegadeesh (1990). These short-term reversals are usually interpreted
as rewards for liquidity provision (Nagel 2012; Cheng, Hameed, Subrahmanyam, and Titman
2013). Figure 3 suggests that our model can generate short-term reversals. To see this,
recall that the amount of information that agents accumulate in our model depends on the
time elapsed between trading rounds—the longer the time between trading dates the more
information agents accumulate through random meetings. Consequently, for a given meeting

30Hong et al. (2010) find empirical evidence for the link between the serial correlation of stock returns and
the diffusion of information. They also document a non-linearity in the term-structure of the serial correlation,
in line with our model’s predictions.

31Not all the asset classes display exactly the same decaying pattern. Whereas for commodities, equities,
and currencies it seems to be decaying, other asset classes feature a U-shaped pattern.

32We do not attempt to match the magnitude of momentum, nor the exact length of the decaying pattern.
Our purpose is to highlight a theoretical mechanism that can generate similar patterns. Empirical work is yet
needed to estimate plausible values of λ and other parameters to better match the data.
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Figure 10: Term Structure of Momentum.
The bars represent values of the serial correlation of returns, when the lookback period varies
from one to eleven months. The calibration is H = S = Φ = 1, λ = 1, and γ = 1
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intensity, our model predicts that the sign of serial correlation varies for different trading
frequencies. At high trading frequencies, agents have little time to talk between trading
rounds, noise trading dominates the effect of information percolation and most informed
investors engage in contrarian strategies (Nagel, 2012). At lower trading frequencies instead,
the information percolation mechanism bites and generates momentum, as shown in Section 3.
Depending on the trading frequency considered, our model can therefore generate short-term
reversals or medium-term momentum.

5.2 Past extreme returns, trading volume, and momentum

Stocks that have extreme past returns tend to have higher momentum profits.33 This finding
suggests that momentum is a hedge for extreme events, an additional challenge posed to
risk-based explanations of momentum. We show that information percolation generates this
positive link between past volatility and momentum. In our model, both the magnitude of
momentum and the variance of stock returns depend on average precision of information.
As the average precision increases, it jointly increases the magnitude of momentum and the
variance of returns, which creates a positive relation between the two.

We plot the variance of stock returns, Var(P̃1 − P̃0), for different values of the meeting
intensity λ in Figure 11. The past return variance is increasing in the speed of information
diffusion. Intuitively, a larger diffusion speed makes prices more responsive to information and

33See, e.g., Jegadeesh and Titman (1993), Fama and French (1996), Moskowitz et al. (2012), and
Bandarchuk and Hilscher (2013).
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Figure 11: Volatility of stock returns at time 1 as a Function of λ
The line represents the volatility of stock returns at time 1, Var(P̃1 − P̃0), as a function of
the meeting intensity λ. The calibration is H = S = Φ = 1 and γ = 1
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thus more volatile (Andrei, 2013). Our model therefore predicts that high past return variance
predicts higher momentum, as in Moskowitz et al. (2012) and Bandarchuk and Hilscher (2013).
In our model, however, the relation between past volatility and momentum is not causal—both
terms are actually driven by the speed of information diffusion λ.

We now turn to the relation between past trading volume and momentum. Lee and
Swaminathan (2000) show that higher past trading volume predicts higher momentum. In our
model trading volume is driven by two forces. First, agents have heterogeneous information
and thus trade because they disagree on the expected value of the fundamental. Second,
information precision is heterogeneous across agents. This information asymmetry induces
additional trades. As a result, information percolation generates higher levels of trading
volume as compared to that in an economy without information percolation but with the
same average precision, as shown in Figure 12.

Figure 12 further shows that trading volume increases with the speed of information
diffusion, which implies a positive relation between past trading volume and momentum.34

The reason is that traders are now better informed and thus trade more aggressively. Since
a higher speed of information diffusion also generates momentum, it follows that high past
trading volume predicts higher momentum, consistent with Lee and Swaminathan (2000).
Furthermore, just like the relation between volatility and momentum, the relation between

34The relation is positive only for low to moderate values of λ. If the meeting intensity is extremely large,
trading volume further increases, whereas momentum diminishes. This can be related to the “Momentum
Life Cycle” hypothesis (Lee and Swaminathan, 2000), whereby high volume stocks are late stage momentum
stocks and therefore exhibit less momentum.
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Figure 12: Trading volume at time 1 as a Function of λ
The blue line represents the trading volume at time 1 in an economy without information
percolation, in which the average precision is assumed to grow exogenously over time. The
red dashed line represents the trading volume at time 1 in an economy with information
percolation. To make the comparison meaningful, average precisions are equal in both
economies. The calibration is H = S = Φ = 1 and γ = 1
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past trading volume and momentum is not causal in our model. Rather, both variables are
driven by the speed of information diffusion λ.

5.3 Disagreement and momentum

There is an empirical link between heterogeneity of beliefs (disagreement) and momentum.
Verardo (2009) shows that momentum profits are significantly larger for portfolios subject
to higher disagreement, whereas Zhang (2006) shows that forecast dispersion (as a proxy
for information uncertainty) leads to slower diffusion of information and therefore lower
momentum.

We conduct the same analysis as we did for trading volume in the previous section and
find similar results, as Figure 13 illustrates. First, comparing an economy with and without
information percolation but with the same average precision, disagreement is higher in the
former economy. The heterogeneity in information precision generates this effect. Second,
disagreement is a hump-shaped function of the speed of information diffusion (for large values
of λ, most investors become well informed and thus agree on the value of the fundamental).
Both the momentum (Figure 3) and disagreement patterns are hump-shaped, but the range
of meeting intensities over which they become decreasing differs. For reasonable values of
meeting intensities, however, momentum and disagreement are positively related.
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Figure 13: Disagreement at time 1 as a Function of λ
The blue line represents the disagreement at time 1 in an economy without information
percolation. The red dashed line represents the disagreement at time 1 in an economy with
information percolation. The average precision of information is the same in both economies.
The calibration is H = S = Φ = 1 and γ = 1
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6 Discussion of Alternative Models

Our modeling assumptions raise two additional questions that we address in this section.
First, how is this model different from one in which the average market precision increases
exogenously, thereby generating momentum (Holden and Subrahmanyam, 2002)? Second, is
momentum an artifact of the single liquidation date of our model?

We show that in a model in which the precision of information increases exogenously, all
traders are contrarians. Such a model does not generate momentum trading and therefore
cannot explain why momentum is not completely eliminated by momentum trading. Then,
we address potential concerns regarding the finite horizon of our model. We build a setup
in which the asset pays an infinite stream of dividends, as opposed to a single liquidating
dividend. In this setup, we demonstrate that information percolation generates or amplifies
momentum. We conclude that our results are not entirely driven by the fact that the world is
run once and gradually comes to an end.

6.1 Alternative Model with Exogenous Increase in Precision

We assume away word-of-mouth communication among investors and assume instead that
investors’ signal precision St improves arbitrarily over time (St > St−1). Applying the measure
of momentum of Banerjee et al. (2009) to this particular setup, we obtain the following result.
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Proposition 4. In an economy with exogenous increase in information precision, momentum
arises at time t = 1 if and only if agent’s precision shows sufficient improvement over time.

Proof. Substituting SΩt ≡ St in (47) and simplifying shows that returns exhibit momentum
at time t = 1 if

S1 − S0 >
H

1 + γ2ΦS0
> 0.

The right-hand side is strictly positive. �

To generate momentum, the necessary improvement in agents’ precision is increasing in
the precision H of the fundamental and risk aversion 1/γ and decreasing in the precision of
the supply increments Φ. Furthermore, if agents’ past precision of private information is large
(S0 large), an even larger precision of private information today (S1) is needed to produce
momentum. To illustrate this, suppose agent’s precision increases geometrically over time, i.e.,
St = at. Using our calibration, we need at least a ≈ 2 to generate momentum—the precision
of the signal at time t = 1 must be at least twice that of the signal at time t = 0.

This observation allows us to highlight the first contribution of our model with respect to
a model with exogenous increase in average precision: while a substantial improvement in
agent’s precision may be difficult to justify exogenously, this phenomenon naturally arises
when investors interact through word-of-mouth communication. Our model therefore provides
a micro-foundation for this gradual increase in agents’ precision.

The second contribution of our model becomes immediately apparent when considering
agents’ trading strategy. Proposition 5, directly related to Proposition 3, makes this point.

Proposition 5. In an economy with exogenous increase in information precision, all investors
implement contrarian trading strategies at time t = 1.

Proof. In this setting, agents have no informational advantage (Ait ≡ ait ≡ 0), since they all
have the same precision. As a result, the trading measure of section 4 simplifies to

cov(∆D̃i
t,∆P̃t) ≡ −

1 + γ2S1Φ
γΦK0

< 0

This expression is negative for all admissible parameter values. �

An exogenous increase in average market precision can generate momentum with contrarian
investors only. But what makes momentum a puzzle is precisely that some agents trade on it
and yet that it persists. Without heterogeneity in individual precisions, an exogenous increase
in average precision therefore cannot provide a satisfactory answer to the momentum puzzle.
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6.2 An Infinite Horizon Model

Our theory for momentum relies on an economy with a single liquidation date. In this section,
we show that our results carry over to a fully dynamic setup. In particular, we build a
stationary version of the model and show that, even in this case, information percolation
generates or amplifies momentum.

We present a simplified version of the model and relegate all technical details to Appendix
A.5. We consider an economy that goes on forever and in which one risky asset (stock) pays a
stochastic dividend Dt per share. As in the finite version of the model, new liquidity traders
enter the market in every trading session. To keep things simple, let us assume that the
dividend process Dt and the supply process Xt follow random walks:

Dt = Dt−1 + εdt (14)

Xt = Xt−1 + εxt (15)

We will discuss more general processes at the end of this section.
All investors observe the past and current realizations of dividends and of the stock prices.

Additionally, each investor observes a signal about the dividend innovation 3-steps ahead:

z̃it = εdt+3 + ε̃it

As in the baseline model, investors meet and share private information over time. A
fundamental difference, however, is that investors do not talk about a single liquidation value,
but about several dividends revealed at different times in the future. That is, not only do
they share information about the dividend 3-steps ahead, but they also share information
about the dividend 2-steps ahead, and so on.35

Unlike the baseline model, we consider an overlapping generation of agents, as in
Bacchetta and Wincoop (2006), Watanabe (2008), Banerjee (2010), and Andrei (2013). This
assumption considerably simplifies the analysis by ruling out dynamic hedging demands.36

The solution method, which follows Andrei (2013), proceeds by specifying an equilibrium
35Note that the model can be extended to a general case in which investors receive information about

the dividend T -steps ahead at the expense of analytical complexity and without altering the main intuition
presented here.

36In the infinite-horizon case the portfolio maximization problem is substantially more complicated. The
fixed point problem cannot be reduced to a finite dimensional one, but Bacchetta and Wincoop (2006) and
Andrei (2013) show how to approximate the problem to a desired accuracy level by truncating the state space.
The (numerical) results for the infinite horizon model are very close to those obtained in the overlapping
generations model. See also Albuquerque and Miao (2014).
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Figure 14: Serial Correlation of Returns in the Stationary Model
The figure depicts the serial correlation of returns, corr(Pt+1 − Pt, Pt+2 − Pt+1), for different
levels of the meeting intensity λ. There are two cases: (i) the dividend and supply processes
are random walks (solid blue line) and (ii) the dividend and supply processes are mean-
reverting with AR(1) parameter 0.9. The calibration for the rest of the parameters ensures
the existence of an equilibrium in the stationary model: R = 1.1, H = 1, S = 10, Φ = 1/100,
and γ = 3, although most of the calibrations we have tried give the same qualitative results.

price that is a linear function of model innovations:

Pt = αDt + βXt−3 + (a3 a2 a1)εdt + (b3 b2 b1)εxt

where εdt ≡ (εdt+1 ε
d
t+2 ε

d
t+3)> are the 3 future unobservable dividend innovations and εxt ≡

(εxt−2 ε
x
t−1 ε

x
t )> are the last 3 supply innovations. The main difference with respect to our

baseline model is that equilibrium prices are now stationary. That is, the coefficients α, β,
a, and b do not change over time, whereas the price coefficients in Theorem 1 change as the
economy approaches the finite end-point.

We now show that information percolation generates momentum, even though prices are
stationary. The random walk specification (14) - (15) helps us isolate the effect of information
percolation on prices. In particular, when investors do not have private information, this
specification directly implies that stock returns are serially uncorrelated. The solid blue line
in Figure 14 then shows that, once investors receive private information, stock returns exhibit
momentum, which information percolation further amplifies.37

The same intuition applies when the dividend and supply processes are not random walks.
Because these processes are now mean-reverting, stock returns exhibit reversals in most cases
(without information percolation). Our calculations show that information percolation can
also generate momentum, much as in the baseline case. For instance, the dashed red line in

37To be consistent with our main model, we compute the serial correlation of returns using ex-dividend
prices. Alternatively, one could assume several trading rounds in-between dividend payment dates (which
would bring this extension even closer to our baseline case), with similar results. See Makarov and Rytchkov
(2009) for a detailed analysis when returns are computed using cum-dividend prices.
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Figure 14 shows how information percolation can turn reversals into momentum when the
dividend and supply processes are mean-reverting with AR(1) parameters 0.9.

7 Rumors

Social interactions are natural propagators of rumors. In this section, we show that a “rumor”
can generate a phase of price over-shooting followed by a phase of price correction. Under
certain conditions, this convergence pattern can jointly produce short-term momentum and
long-term reversal.

We follow Peterson and Gist (1951) and define a rumor as “an unverified account or
explanation of events circulating from person to person and pertaining to an object, event, or
issue in public concern.” To introduce a rumor in our model, we consider a small modification
of the setup of Section 2 and assume that agents receive signals of the form:

z̃it = Ũ + Ṽ + ε̃it (16)

where Ṽ is normally distributed with zero mean and precision ν.
The common noise, Ṽ , satisfies two important properties of a rumor (as defined above):

i) it circulates from person to person and ii) it is unverifiable. The first property arises as
private signals now contain a rumor that is circulated from one agent to another through
word-of-mouth communication. The second property results from the signal specification in
(16): on average, private signals only reveal the sum of the fundamental value and the rumor
(Ũ + Ṽ ). As a result, the rumor is unverifiable as agents cannot distinguish fundamental
information from the rumor, either using prices or their private signals.

Rumors do not last forever, but eventually subside. To incorporate this aspect, we assume
that each agent receives a signal at time t = 3 that is centered on the fundamental:

Z̃i
3 = Ũ + ε̃i3.

Using this signal, agents can back out the content of the rumor (on average) at time t = 3
and the rumor subsides. Overall, agents are aware of the rumor, but cannot learn about its
content until time t = 3.

In the presence of a rumor, asset prices and investors’ asset demands do not have a
closed-form solution. Theorem 4 describes a system of recursive equations for the equilibrium
price coefficients. We provide the proof of Theorem 4 and we solve this system of equations
through an efficient numerical scheme that we describe in Appendix A.6.
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Figure 15: Price Coefficient Ω with and without Rumor
The Figure depicts the same coefficient Ω over time. Each line corresponds to a meeting
intensity of λ = 1, λ = 2, and λ = 3. Panel (a) shows the coefficient Ω in the case of no
rumor, while panel (b) shows the same coefficient in the case involving a rumor.

Theorem 4. In the presence of a rumor, the price P̃ is informationally equivalent to

Q̃t = Ũ + Λt

rSΩt

Ṽ − 1
rSΩt

X̃t

where the equilibrium coefficients Ω and Λ solve a fixed-point problem given by a system of
recursive equations:

Ωt = 1
rS

t∑
j=0

θ̄j −
t−1∑
j=0

Ωj (17)

Λt =
t∑

j=0
θ̄j −

t−1∑
j=0

Λj

in which θ̄ denotes the average coefficients of agents’ private signals in their optimal demand.

The rumor has two important effects on prices, the first of which is immediately apparent
when looking at the coefficient Ω. We plot this coefficient in Figure 15, both when signals
contain a rumor (panel (b) with ν = 3) and when they do not (panel (a)).

When signals do not contain a rumor, the coefficient Ω represents the average number of
incremental signals. Panel (a) shows that this average rises as time passes by, all the more so
as social interactions intensify. When signals contain a rumor (panel (b)), the coefficient Ω
only increases initially. Intuitively, agents know they possess information of lower quality due
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(b) Rumor Precision ν = 6
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Figure 16: Serial Correlation of Return and Rumors
The Figure depicts the serial correlation of stock returns over the first (the solid black line)
and the second period (the blue dotted line) as a function of the meeting intensity. The first
period serial correlation is defined as corr(P̃1 − P̃0, P̃2 − P̃1), whereas the second period serial
correlation is defined as corr(P̃2 − P̃1, P̃3 − P̃2). Each panel corresponds to a different rumor
precision ν.

to the presence of the rumor and therefore apply a discount on the actual number of signals
they have—the coefficient Ω now represents a discounted average of incremental signals.

At time t = 2, the discounted average Ω declines: agents anticipate that they will get
better information at time t = 3 and apply a stronger discount on their number of signals. At
time t = 3, the discounted average number of signals reaches zero for λ = 3: when agents have
collected a vast number of signals, they can accurately forecast Ũ + Ṽ . Hence, when they get
the signal that is centered on the fundamental, they ignore their other signals. Overall, the
rumor induces agents to interpret their information with some caution.

We now investigate how this convergence pattern relates to the serial correlation of stock
returns. Intuitively, the first phase of price “over-shooting” generates short-term momentum
and the second phase of price correction generates long-term reversal. To show this, we
proceed as in Section 3.1 and plot returns’ serial correlation in Figure 16.

When the rumor is fairly precise (panel (a)), returns mostly exhibit momentum: despite
the presence of the rumor, agents’ precision rises over time, generating momentum. As the
precision of the rumor decreases (panel (b)), agents discount their actual number of signals
more strongly. As a result, agents progressively cut back their positions—they adjust their
trades to reflect that their information is of lower quality. While these portfolio adjustments
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do not prevent returns to exhibit momentum in the first-period, they induce reversal in the
second period as the price gradually corrects. Finally, when the rumor’s precision is low
(panel (c)), agents become extremely cautious about their information and the improvement
in their precision is not sufficient to generate momentum.

Overall, our model can jointly generate short-term momentum—consistent with the
empirical finding of Jegadeesh and Titman (1993)—and long-term reversal—consistent with
the over-reaction phenomenon of De Bondt and Thaler (1985).

8 Conclusion

We show that the diffusion of information in financial markets generates momentum in asset
returns. When investors accumulate information through word-of-mouth communication,
the price convergence towards fundamentals is accelerated, producing a trend. All investors
observe this trend and some decide to trade on it, but, due to a rich heterogeneity in investment
strategies generated by word-of-mouth communication, other investors decide to be contrarians
and bet against the trend. As a result, momentum is not completely eliminated and appears
to the econometrician as a profitable empirical anomaly. We also show that word-of-mouth
can spread rumors and generate reversals.

In our theoretical model, momentum returns are positively related to past extreme returns,
past trading volume, and disagreement (Moskowitz et al. 2012; Bandarchuk and Hilscher
2013; Lee and Swaminathan 2000; Zhang 2006; Verardo 2009). We show that information
percolation generates a hump-shaped relation between firm size and momentum returns
(Hong et al., 2000) and we also relate our results with findings on the term-structure of
time-series momentum from Moskowitz et al. (2012) and Jegadeesh (1990). Finally, we show
that our results hold in a infinite horizon economy and that momentum is not completely
eliminated by a large, unconstrained, risk-neutral arbitrageur.

A legitimate question is what empirical exercise would validate our model. We believe that
natural experiments capturing an exogenous increase or decrease in the intensity of word-of-
mouth communication could make a worthwhile empirical point. For example, Shiller (2000)
relates the obvious increase in the word-of-mouth communication intensity once the telephone
became effective during the 1920s with the steady increase of volatility during the same period.
Another option is to study the consequences of the Regulation Fair Disclosure, promulgated
by the U.S. Securities and Exchange Commission in August 2000. This regulation forbids
firms and their insiders to provide information to some investors (often large institutional
investors). Hence, after August 2000 there should be less information propagated through the
word-of-mouth communication channel.
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Even though we abstract from individual behavioral biases, we believe that adding
behavioral biases as in Daniel et al. (1998) or Barberis et al. (1998) would amplify the effects
analyzed in this paper. Other questions are worthwhile investigating, such as extending the
setup to multiple assets, where information percolation could generate rich dynamics of the
conditional correlation among assets. It is also interesting to study precisely the mechanism
of information transmission and find conditions under which investors find it beneficial to tell
the truth (Stein, 2008).
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A Appendix
A.1 Information Percolation
A.1.1 Distribution of Incremental Signals: Closed-Form Solution

To obtain the closed-form solution for the distribution π of incremental signals, we first derive the
equation for its dynamics.

Lemma 1. The probability density function π over the additional number of signals collected by
each agent satisfies

d
dtπt(n) = −λπt(n) + λ(πt ∗ µt)(n), π0 = δn=1. (18)

Proof. We compute the distribution of new signals that have been gathered between time 0 and
time T . Denote by Xti the number of new signals gathered if a meeting occurs at time ti and observe
that it is distributed as

Xti ∼ µ (ti, ·)

where the distribution µ (t, x) satisfies the differential equation in (1). Furthermore, the number
N (T ) of meetings that took place between time 0 and T is a Poisson counter with intensity
λ; accordingly, the total number YT of new signals gathered between time 0 and T is given by∑N(T )
i=1 Xti . We now characterize its distribution. First, observe that YT , conditional on the set

of times {0 ≤ t1 ≤ t2 ≤ ... ≤ tN(T ) ≤ T} at which a meeting occurs (up to time T ) and the total
number of meetings N (T ) (that is, conditioning on the whole trajectory ANT of the Poisson process),
is distributed as

YT |ANT ∼
∫
RN−1

µ
(
YtN − YtN−1 , tN

)
dµ
(
YtN−1 − YtN−2 , tN−1

)
...dµ (Yt1 − 0, t1) (19)

≡
∫
RN−1

µ (XtN , tN ) dµ
(
XtN−1 , tN−1

)
...dµ (Xt1 , t1) .

Second, observe that the distribution µ (Xti , ti) of increment can be expressed as a translation T
of the type measure µ and the increment x. Hence, the distribution in (19) may be written as

YT |ANT ∼ ΓN(T )
i=1 µti

where, for any probability measures α1, ..., αk, we write Γki=1 = α1 ∗ α2 ∗ ... ∗ αk.
Now, observe that each ti in the sequence of meetings {0 ≤ t1 ≤ t2 ≤ ... ≤ tN(τ) ≤ T} conditional

on N (T ) is uniformly distributed over T ; accordingly, we have that

YT |N (T ) ∼ ΓN(T )
i=1

1
T

∫ T

0
µtidti =

 1
TN(T )

(∫ T

0
µsds

)∗N(T )


where ∗n denotes the n−fold convolution.
Finally, since N (T ) is a Poisson(λ) counter, we have

YT ∼
∞∑
k=0

e−λT
(λT )k

k!
1
T k

(∫ T

0
µsds

)∗k
=
∞∑
k=0

e−λT
λk

k!

(∫ T

0
µsds

)∗k
.
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Using the fact that, by Taylor expansion, ex is equivalently written as ex =
∑∞
k=0

xk

k! , we can write

πT = e
λ

(∫ T
0 µsds−T

)
.

Differentiating this expression, we obtain (18). �

A.1.2 Proof of Proposition 1

To obtain the closed form, it is convenient to think of individual signals received at times t = 0, 1, 2
separately. That is, even though all are signals about the same fundamental, we will treat them
separately. Assume that signals received at time t = 0, 1, 2 are of type s0, s1, and s2 respectively.

Let us fix some notation:

0. n0 ≡ the total number of type s0 signals received between time 0 and t.

1. n1 ≡ the total number of type s1 signals received between time 1 and t.

2. n2 ≡ the total number of type s2 signals received between time 2 and t.

and:

0. m0 ≡ the incremental number of type s0 signals received between the last trading date and t.

1. m1 ≡ the incremental number of type s1 signals received between the last trading date and t.

2. m2 ≡ the incremental number of type s2 signals received between the last trading date and t.

Let us focus first on the total number of signals, n0, n1, and n2. From time 0 to 1, the distribution
of n0 has the support [1,∞). Recursive computations show that this distribution is

µtotal,n0
= e−n0λτ

(
eλτ − 1

)n0−1

where 0 ≤ τ ≤ 1.
From time 1 to 2, the distribution of {n0, n1} has the support [1,∞)× [1,∞). Further recursive

computations show that this distribution is

µtotal,n0,n1
=


(n0−1
n1−1

)
e−n0λ−n1λτ

(
eλ − 1

)n0−n1 (
eλτ − 1

)n1−1
, if n0 ≥ n1

0, otherwise

From time 2 to 3, the distribution of {n0, n1, n2} has the support [1,∞)× [1,∞)× [1,∞). Further
recursive computations show that this distribution is

µtotal,n0,n1,n2
=


(n0−1
n1−1

)(n1−1
n2−1

)
e−n0λ−n1λ−n2λτ

(
eλ − 1

)n0−n2 (
eλτ − 1

)n2−1
, if n0 ≥ n1 ≥ n2

0, otherwise

Focus now on the distribution of increments, m0, m1, and m2. From time 0 to 1, the distribution
of m0 has the support [0,∞). Recursive computations show that this distribution is

µincr,n0
= e(−m0+1)λτ

(
eλτ − 1

)m0 (20)
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From time 1 to 2, the distribution of {m0,m1} has the support [0,∞)× [0,∞). Further recursive
computations show that this distribution is

µincr,m0,m1
=


(m0−1
m1−1

)
e−m0λ−(m1+1)λτ

(
eλ − 1

)m0−m1 (
eλτ − 1

)m1
, if m0 ≥ m1

0, otherwise
(21)

From time 2 to 3, the distribution of {m0,m1,m2} has the support [0,∞) × [0,∞) × [0,∞).
Further recursive computations show that this distribution is

µincr,m0,m1,m2
=


(m0−1
m1−1

)(m1−1
m2−1

)
e−m0λ−m1λ−(m2+1)λτ

(
eλ − 1

)m0−m2 (
eλτ − 1

)m2
, if m0 ≥ m1 ≥ m2

0, otherwise
(22)

We can now group the signals of the same type, since they are all informative about the same
fundamental. From time 0 to 1, signals are only of type s0 and thus the probability density function
over the additional number of signals follows from (20) with τ = 1, with m0 = n− 1:

π1(n) = e−nλ
(
eλ − 1

)n−1

From time 1 to 2, given a number n of additional signals one has to find all the combinations of
m0 and m1 for which m0 +m1 = n− 1, and then make the sum of all the corresponding terms in
(21) with τ = 1:

π2(n) =
n−1∑
i=0

i∑
j=0

[(
i− 1
j − 1

)
1{i+j=n−1}e

−iλ−(j+1)λ
(
eλ − 1

)i]

From time 2 to 3, given a number n of additional signals one has to find all the combinations of
m0, m1, and m2 for which m0 +m1 +m2 = n− 1, and then make the sum of all the corresponding
terms in (22) with τ = 1:

π3(n) =
n−1∑
i=0

i∑
j=0

j∑
k=0

[(
i− 1
j − 1

)(
j − 1
k − 1

)
1{i+j+k=n−1}e

−(i+j)λ−(k+1)λ
(
eλ − 1

)i]

A.1.3 Numerical Approach: Fourier Transform

To obtain the distribution of incremental signals numerically, we proceed through discrete Fourier
transforms. Denote the Fourier transform of µ and π by µ̂t(z) :=

∫
R e

izndµt(n) and π̂t(z) :=∫
R e

izndπt(n), respectively, where i =
√
−1 and z ∈ R. As in Duffie and Manso (2007), µ̂ is given in

closed form:
µ̂t(z) = µ̂0(z)

eλt(1− µ̂0(z)) + µ̂0(z)

where µ̂0(z) = eiz since µ0(n) is a Dirac mass at 1.
To obtain π̂, we integrate (18) and get the following equation

d
dt π̂t(z) = −λπ̂t(z) + λµ̂t(z)π̂t(z),
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the solution of which is also available in closed form:

π̂t(z) = π̂0(z)eiπ

eλt(µ̂0(z)− 1)− µ̂0(z)

where π̂0(z) = eiz since π0(n) is a Dirac mass at 1.
We can now recover π numerically by using the inverse Fourier formula. To do so, notice that

both distributions µ(n) and π(n) are so-called lattice distributions for which every possible realization
of n can be represented as a+ bk where k only takes integral values—in our case, n ∈ N, a = N

2 ,
and b = 1

2 . For this class of discrete distributions, the inverse Fourier formula writes

P [X = xk] = b

2π

∫ π/b

−π/b
e−izxk µ̂t (z) dz. (23)

To compute the integral in (23), we use fast Fourier Transform: we rewrite (23) as

P [X = xk] = b

π

∫ π/b

0
e−izxk µ̂t (z) dz.

We then use the trapezoid rule rule to discretize the integral:

P [X = xk] ≈
b

π

e−i
π
b
xk µ̂t

(
π
b

)
∆z

2 + b

π

M−1∑
j=0

δje
−ij∆zxk µ̂t (j∆z) ∆z

with δj = 1
2 if j = 1 and δj = 1 otherwise. We need to choose ∆z such that the upper integration

bound π
b = 2π is reached by z; accordingly, we set ∆z ≡ 2π

M . Furthermore, the grid points for xk are
xk = −d + λk, j ∈ N and the fast Fourier transform method imposes that λ∆z = 2π

M , i.e., λ = 1.
Since xk ∈ N, we must have that d = 0. As a result, P [X = xk] takes the form of a discrete Fourier
transform:

P [X = xk] ≈
1
M

M−1∑
j=0

gje
−jk 2π

M
i

with
gj = δj

M

2π µ̂t
(
j

2π
M

) 2π
M
.

Finally, since each agent gets an additional signal every period, we must use the discrete Fourier
transform sequentially: to derive the distribution π at time t+ 1, we use the numerical expression
for µt(n) that we computed at time t and compute µ̂0(z) =

∑N
k=1 e

izkf0(k) where

f0(n) =
{
µt(n− 1) if n ≥ t+ 1

0 otherwise .

We then substitute µ̂0(n) into π̂t(n)|t=1 and apply the inverse Fourier formula, which yields πt+1.
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A.2 Proof of Theorem 1
We provide the proof for a two trading session economy, that is, we eliminate for ease of exposition
dates t = 2 and t = 3. Once the equilibrium quantities are written in a recursive form, as in
Brennan and Cao (1997), or in He and Wang (1995), it is straightforward to derive the full recursive
equilibrium solution.

The model is solved backwards, starting from date 1 and then going back to date 0. First,
conjecture that prices in period 0 and period 1 are

P̃0 = β0Ũ − α0,0X̃0 (24)
P̃1 = β1Ũ − α1,0X̃0 − α1,1X̃1 (25)

Consider the normalized price signal in period zero (which is informationally equivalent to P̃0):

Q̃0 = 1
β0
P̃0 = Ũ − α0,0

β0
X̃0 (26)

Replace X̃0 from (26) into (25) to obtain

P̃1 = ϕ1Ũ + ξ1Q̃0 − α1,1X̃1 (27)

where ϕ1 = β1 − α1,0
β0
α0,0

and ξ1 = α1,0
β0
α0,0

. These coefficients are to be determined in equilibrium.
We normalize the price signal in period t = 1 and obtain Q̃1:

Q̃1 = 1
ϕ1

(
P̃1 − ξ1Q̃0

)
= Ũ − α1,1

ϕ1
X̃1

Observing {Q̃0, Q̃1} is equivalent with observing {P̃0, P̃1}. We conjecture the following relation-
ships (see Admati 1985):

α0,0
β0

= 1
γSΩ0

(28)

α1,1
ϕ1

= 1
γSΩ1

(29)

where Ωt is the cross-sectional average of the number of additional signals at time t = 0, 1, Ωt =∑
ω∈N ωπt(ω). In our setup, Ω0 = 1 ∀λ, Ω1 = 1 if λ = 0, and Ω1 > 1 if λ > 0. Relationships (28) and

(29), which make the calculations that follow straightforward, are to be verified once the solution is
obtained. Thus, the normalized price signals, informationally equivalent with prices, are:

Q̃0 = Ũ − 1
γSΩ0

X̃0 (30)

Q̃1 = Ũ − 1
γSΩ1

X̃1 (31)
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A.2.1 Period 1

Consider an investor i who, at date t = 1, collects ωi1 ≥ 1 additional signals. At date t = 1, investor
i chooses D̃i

1 to maximize expected utility of final wealth:

max
D̃i1

E
[
−e−

1
γ
W̃ i

2

∣∣∣∣F̃ i1]

where the final wealth at date t = 2 (at liquidation) is

W̃ i
2 = XiP̃0 + D̃i

0

(
P̃1 − P̃0

)
+ D̃i

1

(
Ũ − P̃1

)
(32)

and F̃ i1 represents the total information available at date t = 1. This information is given by Z̃i1, Z̃i0
(private signals) and Q̃1, Q̃0 (public signals, informationally equivalent with prices and defined in
(30) and (31)). Note that Z̃i0 represent only one signal of precision S, but Z̃i1 represent the average
of the ωi1 additional signals collected by the investor at date t = 1 (ωi1 signals of equal precision
S are informationally equivalent with a signal equal to their average and having precision ωi1S).
With this information at hand at date t = 1, investor i will try to forecast Ũ . The state variables
corresponding to investor i are therefore

Precision → 1
H

1
ωi1S

1
S

1
Φ

1
Φ

Variable ↓ Ũ ε̃i1 ε̃i0 X̃1 X̃0 E [·]
Ũ 1 0 0 0 0 0
Z̃i1 1 1 0 0 0 0
Z̃i0 1 0 1 0 0 0
Q̃1 1 0 0 - 1

γSΩ1
0 0

Q̃0 1 0 0 0 - 1
γSΩ0

0

It is straightforward to calculate

Ki
1 = V ar−1

[
Ũ
∣∣∣Z̃i1, Z̃i0, Q̃1, Q̃0

]
µ̃i1 = E

[
Ũ
∣∣∣Z̃i1, Z̃i0, Q̃1, Q̃0

]
by using the projection theorem:

Theorem 5 (Projection Theorem). Consider a n-dimensional normal random variable

(θ, s) ∼ N
([

µθ
µs

]
,

[
Σθ,θ Σθ,s

Σs,θ Σs,s

])

The conditional density of θ given s is normal with conditional mean

µθ + Σθ,sΣ−1
s,s (s− µs)

and variance-covariance matrix
Σθ,θ − Σθ,sΣ−1

s,sΣs,θ

provided Σs,s is non-singular.
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We get

Ki
1 = H + S

(
1 + ωi1

)
+ γ2S2Φ

(
Ω2

0 + Ω2
1

)
µ̃i1 = 1

Ki
1

[
SZ̃i0 + Sωi1Z̃

i
1 + γ2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)]
(33)

The optimal demand of trader i in period 1 has a standard form (from the normality of distribution
assumption in conjunction with the exponential utility function):

D̃i
1 = γKi

1

(
µ̃i1 − P̃1

)
(34)

Replace (33) in (34) to obtain

D̃i
1 = γ

[
SZ̃i0 + Sωi1Z̃

i
1 + γ2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)
−Ki

1P̃1
]

(35)

We can now integrate the optimal demands to get the total demand. We follow the convention
used by Admati (1985) that implies

∫ 1
0 Z̃

i
j = Ũ , a.s.. More important, we have now to keep track of

the heterogeneity in information endowments when aggregating all individual demands. In particular,
at time t = 1 there is an infinity of types of investors with respect to their number of signals, and in
each such type there is a continuum of investors. Consequently, the total demand at time t = 1 is

D̃1 =
∫ 1

0
D̃i

1 =
∞∑

ωi1=1

[
π1(ωi1)

∫
ωi1

D̃i
1

]

which yields

D̃1 = γ
[
S (Ω0 + Ω1) Ũ + γ2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)
−K1P̃1

]
(36)

where K1 is the average precision across the entire population of agents:

K1 ≡
∞∑

ωi1=1
Ki

1(ωi1)π1(ωi1) = H + S (Ω0 + Ω1) + γ2S2Φ
(
Ω2

0 + Ω2
1

)

Replace (31) in (36) to obtain

D̃1 = γ
[(
SΩ0 + SΩ1 + γ2S2ΦΩ2

1

)
Ũ + γ2S2ΦΩ2

0Q̃0 − γΦSΩ1X̃1 −K1P̃1
]

The market clearing condition is D̃1 = X̃0 + X̃1. Once we impose market clearing, we can use
the conjectured P̃1 equation (27) to get the undetermined coefficients ϕ1, ξ1, and α1,1:

ϕ1 = SΩ1
(
1 + γ2SΦΩ1

)
K1

,

ξ1 = SΩ0
(
1 + γ2SΦΩ0

)
K1

α1,1 = 1 + γ2SΦΩ1
γK1
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From these solutions, we can verify that, indeed, α1,1
ϕ1

= 1
γSΩ1

. Hence, (29) is now verified. The
undetermined coefficients of P̃1 from the conjectured form (25) are

β1 = K1 −H
K1

α1,0 = 1 + γ2SΦΩ0
γK1

α1,1 = 1 + γ2SΦΩ1
γK1

and thus

P̃1 = K1 −H
K1

Ũ − 1 + γ2SΦΩ0
γK1

X̃0 −
1 + γ2SΦΩ1

γK1
X̃1 (37)

which can also be written as

P̃1 = SΩ0 + γ2S2ΦΩ2
0

γK1
Q̃0 + SΩ1 + γ2S2ΦΩ2

1
γK1

Q̃1 (38)

Furthermore, replacing P̃1 written under the form (38) in the optimal demand written under the
form (35) gives the following result:

D̃i
1 = γ

[
SΩ0

(
Z̃i0 − Q̃0

)
+ Sωi1Z̃

i
1 − SΩ1Q̃1 −

(
Ki

1 −K1
)
P̃1
]

(39)

The coefficient of P̃1 in (39) represents the cumulative informational (dis)advantage of investor i,
which we denote thereafter by Ai1 ≡ Ki

1 −K1. Thus, the optimal demand of investor i at time t = 1
is

D̃i
1 = γ

(
Sωi0Z̃

i
0 − SΩ0Q̃0 + Sωi1Z̃

i
1 − SΩ1Q̃1 −Ai1P̃1

)
(40)

where ωi0 = Ω0 = 1, but we have included them here to highlight the recursive form of the optimal
demand.

A.2.2 Period 0

The problem of investor i at time t = 0 is

max
D̃i0

E
[
−e−

1
γ
W̃ i

2

∣∣∣∣Z̃i0, Q̃0

]

where the final wealth is given in (32). Observe that, at time t = 0, investor i needs to estimate Ũ ,
P̃1 and D̃i

1, after observing Z̃i0 and Q̃0. P̃1 and D̃i
1 are given by (37) and (39). The maximization

problem then becomes:

max
D̃i0

E
[
−e−

1
γ

[
XiP̃0+D̃i0

(
P̃1−P̃0

)
+D̃i1

(
Ũ−P̃1

)]∣∣∣∣Z̃i0, Q̃0

]

Lemma 2. When an agent builds her portfolio, her future number of signals is irrelevant.

Proof. We prove the claim in a slightly more general context: for the proof only, suppose agent i
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starts with an arbitrary number n0 of signals at time t = 0. The value function V i of agent i is then
given by

V i(n0,W0) = e
− 1
γ
W0 max

D̃i0(n0)
E
[
−e−

1
γ

(
D̃i0(n0)

(
P̃1−P̃0

)
+D̃i1(n1)

(
Ũ−P̃1

))∣∣∣∣Z̃i0, Q̃0

]

= e
− 1
γ
W0 max

D̃i0(n0)

∞∑
k=1

µ1(k)E
[
−e−

1
γ

(
D̃i0(n0)

(
P̃1−P̃0

)
+D̃i1(k)

(
Ũ−P̃1

))∣∣∣∣Z̃i0, Q̃0;n1 = k

]
︸ ︷︷ ︸

g
(
n0,k,D̃i0

) .

The function g represents an expectation of an exponential affine quadratic normal variable. To
derive its explicit form, we use the following theorem.

Theorem 6. Consider a random vector z ∼ N (0,Σ). Then,

E
[
ez
′Fz+G′z+H

]
= |I − 2ΣF |−

1
2 e

1
2G
′(I−2ΣF )−1ΣG+H .

Tedious computations then show that

g
(
n0, k, D̃

i
0

)
= − |I − 2Σ(n0, k)F (k)|−

1
2 e

1
2G
(
n0,k,D̃i0

)′
(I−2Σ(n0,k)F (k))−1Σ(n0,k)G

(
n0,D̃i0

)
+H
(
n0,k,D̃i0

)
(41)

where

Σ(n0, k) =


1

Ki
0(n0)

K1−H
K1Ki

0(n0)
1

Ki
0(n0) −

1
Ki

1(k)
K1−H

K1Ki
0(n0)

(Ki
1(k)−S(k−n0))(1+γ2SΦΩt+1)2

K2
1K

i
0(n0)γ2Φ

K1−H
K1Ki

0(n0)
1

Ki
0(n0) −

1
Ki

1(k)
K1−H

K1Ki
0(n0)

1
Ki

0(n0) −
1

Ki
1(k)

 ,

F (k) =

 0 1
2K

i(k) −1
2K

i(k)
1
2K

i(k) −Ki(k) 1
2K

i(k)
−1

2K
i(k) 1

2K
i(k) 0

 ,

G
(
n0, k, D̃

i
0

)
=


Ki

1(k)S(Ω0(H+n0S(1+γ2SΩ0Φ))Q̃0−K0n0Z̃i0)
K1Ki

0(n0)

− D̃i0
γ −

2Ki
1(k)S(Ω0(H+n0S(1+γ2SΦΩ0))Q̃0−K0n0Z̃i0)

K1Ki
0(n0)

Ki
1(k)S(Ω0(H+n0S(1+γ2SΩ0Φ))Q̃0−K0n0Z̃i0)

K1Ki
0(n0)

 ,

H
(
n0, k, D̃

i
0

)
= − P̃0

γ
D̃i

0 −

S

 Ki
1(k)γS((K0n0 +H(Ω0 − n0))Q̃0 −K0n0Z̃

i
0)2

+K1K
i
0(n0)D̃i

0

(
(K0n0 +K1γ

2SΦΩ2
0 +H(Ω0 − n0))Q̃0

+n0SΩ1(1 + γ2SΦΩ1)Z̃i0

) 
γK2

1K
i
0(n0)2 .

Further computations show that

h(n0, k) ≡ |I−2Σ(n0, k)F (k)| = Ki
1(k)

K2
1K

i
0(n0)γ2Φ

 H2γ2Φ +H(1 + γ2Φ(K0 +K1 − 2H + SΩ1))

+S
(

n0(1 + γ2SΦΩ1)2

+γ2SΦΩ2
0(2 + γ2Φ(K1 −H + S(Ω0 + Ω1)))

) 
and

q
(
n0, D̃

i
0

)
≡ 1

2G
(
n0, k, D̃

i
0

)′
(I − 2Σ(n0, k)F (k))−1 Σ(n0, k)G

(
n0, D̃

i
0

)
+H

(
n0, k, D̃

i
0

)
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= 1
2Ki

0(n0)γ2 (H2γ2Φ +HX + S
(
n0Z2

1 + γ2SΦY Ω2
0
))

×

 2Ki
0(n0)γD̃i

0

(
P̃0
(
H2γ2Φ +HX + S

(
n0Z

2
1 + γ2SΦY Ω2

0
))

−S
(
γ2ΦΩ0Q̃0

(
H + SΩ0

(
γ2Φ(K1 + S(Ω0 + Ω1)) + 2

))
+ n0Z

2
1 Z̃

i
0

) )
+Ki

0(n0)Z2
1 (D̃i

0)2 − γ4Φ
(
SΩ0Q̃0(H + n0SZ0)−K0n0SZ̃

i
0

)2


with

X = 1 + γ2Φ(K0 +K1 − 2H + SΩ1),
Y = 2 + γ2Φ(K1 −H + S(Ω0 + Ω1)),
Zt = 1 + γ2SΦΩt.

Plugging these expressions into (41), agent i solves

V i(n0,W0) = e
− 1
γ
W0

( ∞∑
k=1

µ1(k)h(n0, k)
)

︸ ︷︷ ︸
anticipation of future signals

max
D̃i0(n0)

−eq
(
n0,D̃i0

)
(42)

and it follows that her portfolio decision is independent of her expectation regarding her future
number of signals. �

To obtain agent i’s optimal demand, we solve the problem in (42) and impose the first-order
condition

∂

∂D̃i
0
q
(
n0, D̃

i
0

)
= 0.

We integrate the resulting optimal demand and impose market clearing in order to solve for the
undetermined coefficients of P̃0, i.e., β0 and α0,0. The solutions for these coefficients are:

β0 = K0 −H
K0

α0,0 = 1 + γ2SΦΩ0
γK0

(43)

where

K0 = Ki
0 = H + S + γ2S2ΦΩ2

0 (44)

µ̃i0 = 1
K0

(
SZ̃i0 + γ2S2ΦΩ2

0Q̃0
)

We have K0 = Ki
0 in (44) because investors start with homogeneous information endowments at

time 0, i.e., all have one signal. In other words, the cumulative informational (dis)advantage is zero
for all investors: Ai0 = 0, ∀i. The optimal demand of investor i at time t = 0 is

D̃i
0 = γ

(
Sωi0Z̃

i
0 − SΩ0Q̃0 −Ai0P̃0

)
(45)

where we have added the last term to show that the demand at time t = 0 takes a similar form with
the demand at time t = 1, expressed in equation (40). At this point, we can use (43) and (44) to
verify that, indeed, α0,0

β0
= 1

γSΩ0
. Hence, (28) is now verified. The solution can then be written in a
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recursive form and extended to more than 2 trading periods, as done in Theorem 1.

A.2.3 Optimal Trading Strategy

The optimal trading strategy of investor i at time t = 1 follows from (40) and (45):

∆D̃i
1 ≡ D̃i

1 − D̃i
0 = γ

(
Sωi1Z̃

i
1 − SΩ1Q̃1 −Ai1P̃1 +Ai0P̃0

)
= γ

[
Sωi1Z̃

i
1 − SΩ1Q̃1 −Ai1

(
P̃1 − P̃0

)
−
(
Ai1 −Ai0

)
P̃0
]

The cumulative informational (dis)advantage at time t = 1, Ai1, has a recursive form:

Ai1 = Ai0 + Sωi1 − SΩ1 = Ai0 + ai1

where ai1 ≡ Sωi1 − SΩ1 is the marginal informational (dis)advantage of trader i at time t = 1.
Thus, the optimal trading strategy becomes:

∆D̃i
1 = γ

[
Sωi1

(
Z̃i1 − P̃0

)
− SΩ1

(
Q̃1 − P̃0

)
−Ai1

(
P̃1 − P̃0

)]
= γ

[(
Sωi1 − SΩ1

) (
Z̃i1 − P̃0

)
+ SΩ1

(
Z̃i1 − P̃0

)
− SΩ1

(
Q̃1 − P̃0

)
−Ai1

(
P̃1 − P̃0

)]
(46)

Furthermore, it can be verified that

Q̃0 = K0P̃0
SΩ0 + γ2S2ΦΩ2

0

Q̃1 = K1P̃1 −K0P̃0
SΩ1 + γ2S2ΦΩ2

1

Replacing Q̃1 in (46) yields

∆D̃i
1 = γ

[
ai1

(
Z̃i1 − P̃0

)
+ SΩ1

(
Z̃i1 − P̃0

)
− K1

1 + γ2SΦΩ1

(
P̃1 − P̃0

)
−Ai1

(
P̃1 − P̃0

)]
This is the same recursive form as in (9) and thus the proof of Theorem 1 is complete. �
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A.3 Formula for ρt and Proof of Proposition 2

ρt =

(
1
Kt
− 1

Kt+1

) ((
1

Kt−1
− 1

Kt

) (
H +

∑t−1
j=0(1 + γ2SΩjΦ)2

)
− 1

γ2KtΦ(1 + γ2SΩtΦ)2
)

(
1

Kt−1
− 1

Kt

)2 (
H + 1

γ2Φ
∑t−1
j=0(1 + γ2SΩjΦ)2

)
+ 1

γ2K2
t Φ(1 + γ2SΩtΦ)2

. (47)

Proof of Proposition 2

Shutting down social interactions, prices are obtained as a special case of (2) when the average
incremental number of signal satisfies Ωt ≡ 1; accordingly, the numerator in (47) simplifies to

− HS
(
γ2SΦ + 1

)2
γ2Φ (H + St (γ2SΦ + 1)) (H + S(t+ 1) (γ2SΦ + 1))2 (H + S(t+ 2) (γ2SΦ + 1))

< 0.

This expression is negative for any time t.
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A.4 Proof of Theorem 3
We provide the proof for a two trading session economy, that is, we eliminate for ease of exposition
dates t = 2 and t = 3.

The model is solved backwards, starting from date 1 and then going back to date 0. First,
conjecture that prices in period 0 and period 1 are

P̃0 = β0Ũ − γ0,0X̃0 + λ0x̃0 (48)
P̃1 = β1Ũ − γ1,0X̃0 − γ1,1X̃1 + λ1x̃1 (49)

Consider the normalized price signal in period zero (which is informationally equivalent to P̃0):

Q̃0 = 1
β0

(P̃0 − λ0x̃0) = Ũ − γ0,0
β0

X̃0 (50)

where the demand of the risk-neutral trader is observable because she only trades on public
information, i.e., prices.

Replace X̃0 from (50) into (49) to obtain

P̃1 = ϕ1Ũ + ξ1Q̃0 − γ1,1X̃1 + λ1x̃1 (51)

where ϕ1 = β1 − γ1,0
β0
γ0,0

and ξ1 = γ1,0
β0
γ0,0

. We normalize the price signal in period t = 1 and obtain
Q̃1:

Q̃1 = 1
ϕ1

(
P̃1 − ξ1Q̃0 − λ1x̃1

)
= Ũ − γ1,1

ϕ1
X̃1

Observing {Q̃0, Q̃1} is equivalent with observing {P̃0, P̃1}. As in the setup of Section 2.2, we
conjecture the following relationships:

Q̃0 = Ũ − 1
γSΩ0

X̃0

Q̃1 = Ũ − 1
γSΩ1

X̃1

A.4.1 Period 1

At time t = 1, both the precision and the posterior mean of an investor i remain identical to those
of Section 2.2 in (33) along with her demand in (34). Integrating informed agents’ demand again
yields (36). The risk-neutral agent solves

max
x̃1

x̃1E[Ũ − P̃t|Q̃0, Q̃1] = max
x̃1

x̃1E[Ũ − ϕ1Q̃1 − ξ1Q̃0 − λ1x̃1|Q̃0, Q̃1].

and her optimal demand satisfies

x̃1 = 1
2λ1

(
E[Ũ |Q̃0, Q̃1]− ϕ1Q̃1 − ξ1Q̃0

)
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where

E[Ũ |Q̃0, Q̃1] =
γ2S2Φ

(
Ω2

0Q̃0 + Ω2
1Q̃1

)
H + γ2S2Φ(Ω2

0 + Ω2
1)

.

The market clearing condition is D̃1 + x̃1 = X̃0 + X̃1. Once we impose market clearing, we can use
the conjectured equation (51) to get the undetermined coefficients ϕ1, ξ1, γ1,1, and λ1:

ϕ1 = SΩ1
(
1 + γ2SΦΩ1

)
K1

,

ξ1 = SΩ0
(
1 + γ2SΦΩ0

)
K1

γ1,1 = 1 + γ2SΦΩ1
γK1

λ1 = 1
γK1

From these solutions, we can verify that, indeed, γ1,1
ϕ1

= 1
γSΩ1

. Hence, (29) is also verified in the
presence of the risk-neutral agent.

A.4.2 Period 0

The problem of investor i at time t = 0 is, as in Section 2.2,

max
D̃i0

E
[
−e−

1
γ
W̃ i

2

∣∣∣∣Z̃i0, Q̃0

]

where the expectation now takes into account the new price function in (51). Importantly, Lemma 2
still holds and informed agents’ portfolio remains independent of the expected number of signals
they will get in the future. The risk-neutral agent solves

max
x̃0

x̃0E[P̃1 − P̃0|Q̃0] = max
x̃0

x̃0E[P̃1 − β0Q̃0 − λ0x̃0|Q̃0]. (52)

The optimization problem in (52) only involves the profits of period 0 because we assume that the
risk-neutral agent does not take into account that a deviation from her strategy will affect current
and future price signals for informed agents who cannot detect a deviation in her strategy; in that
sense, the risk-neutral agent is myopic. As a result, her optimal demand satisfies

x̃0 = 1
λ0

(
E[P̃1|Q̃0]− β0Q̃0

)
where

E[P̃1|Q̃0] =
S
(
2γ2SΦ + H

H+S(Ω0+Ω1+γ2SΦ(Ω2
0+Ω2

1))

)
2(H + γ2S2ΦΩ2

0)

Integrating informed investors’ optimal demand and imposing market clearing D0 + x̃0 = X̃0, we
obtain β0, γ0,0, and λ0. We can then verify that, indeed, γ0,0

β0
= 1

γSΩ0
. By induction, the solution of

the equilibrium for the for trading dates takes the form in Theorem 3.
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A.5 Appendix for Section 6.2
This Appendix mainly follows Andrei (2013). Consider the following processes for dividends and
noisy supply:

Dt = κdDt−1 + εdt (53)
Xt = κxXt−1 + εxt (54)

where 0 ≤ κd ≤ 1 and 0 ≤ κx ≤ 1. The dividend and supply innovations are i.i.d. with normal
distributions: εdt ∼ N (0, 1/H) and εxt ∼ N (0, 1/Φ). There is one riskless bond assumed to have an
infinitely elastic supply at positive constant gross interest rate R.

The economy is populated by a continuum of rational agents, indexed by i, with CARA utilities
and common risk aversion 1/γ. Each agent lives for two periods, while the economy goes on forever
(overlapping generations). All investors observe the past and current realizations of dividends and
of the stock prices. Additionally, each investor observe an information signal about the dividend
innovation 3-steps ahead:

z̃it = εdt+3 + ε̃it

As time goes by, investors share their private information at random meetings. The information
structure and the probability density function over the number of private signals is described in
Andrei (2013). As usual in noisy rational expectations, we conjecture a linear function of model
innovations for the equilibrium price:

Pt = αDt + βXt−3 + (a3 a2 a1)εdt + (b3 b2 b1)εxt

Proposition 1 in Andrei (2013) describes the rational expectations equilibrium, which is found by
solving a fixed point problem provided by the market clearing condition. Infinite horizon models
with overlapping generations have multiple equilibria (there are 2N equilibria for a model with
N assets). The model studied here has 2 equilibria, one low volatility equilibrium and one high
volatility equilibrium. We focus on the low volatility equilibrium, which is the limit of the unique
equilibrium in the finite version of the model.

To understand how the two equilibria arise, let’s assume that there is no private information. In
this case, the equilibrium price has a closed form solution:

Pt = κd
R− κd

Dt −
Σ
γ

κ3
x

R− κx
Xt−3 −

Σ
γ

κ2
x

R− κx
εxt−2 −

Σ
γ

κx
R− κx

εxt−1 −
Σ
γ

1
R− κx

εxt

where Σ ≡ (α+ 1)2σ2
d + b21σ

2
x. Thus, the coefficient b1 has to solve a quadratic equation:

b1 = − γ

R− κx

[(
R

R− κd

)2
σ2
d + b21σ

2
x

]

For different parameter values, the above quadratic equation can have two solutions, one solution,
or none. In this particular example (no private information), the autocovariance of stock returns,
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Cov (Pt+1 − Pt, Pt+2 − Pt+1), is

Cov (Pt+1 − Pt, Pt+2 − Pt+1) =− α2σ2
d

1− κd
1 + κd

+ β2(κx − 1)2κx
σ2
x

1− κ2
x

+

(
β − b3 b3 − b2 b2 − b1 b1

)
−β(1− κx)
β − b3
b3 − b2
b2 − b1


It can be shown numerically that this covariance is generally negative when κd < 1 and κx < 1.

In the random walk specification (53) - (54), the covariance is zero.
Now, if agents receive private information, the model has to be solved numerically using the

methodology described in Andrei (2013). More precisely, α, β, a, and b solve the following equations:

(α+ 1)κd −Rα = 0

K̄tβκx − K̄tRβ −
1
γ
κ3
x = 0

K̄tb
∗B−1A + L̄tH− K̄tRa = 01×3

K̄tb
∗ + L̄tB∗ − K̄tRb−

1
γ

(
κ2
x κx 1

)
= 01×3

where K̄t, b∗, B, A, L̄t, H, and B∗ are defined in Appendix A.3 of Andrei (2013).
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A.6 Appendix for Section 7
To prove Theorem 4, we adapt the expression for the price P̃ in Brennan and Cao (1997) and write

P̃t = βtŨ + αtṼ +
t−1∑
j=0

ξj,tQ̃j − γtX̃t.

The price is informationally equivalent to

Q̃t = 1
βt
P̃t −

t−1∑
j=0

ξj,tQ̃j = Ũ + αt
βt
Ṽ − γt

βt
X̃t.

Furthermore, we can write agent i’s individual demand as

D̃i
t = ωitP̃t +

t∑
k=0

λikQ̃k +
t∑

k=0
θikZ̃

i
k.

By the law of large numbers, we have that
∫
i∈[0,1] Z̃

i
kdµ(i) = Ũ + Ṽ . As a result, when we aggregate

individual demands, we obtain

∫
i∈[0,1]

D̃i
tdµ(i) = ω̄tP̃t +

t∑
k=0

λ̄kQ̃k +
t∑

k=0
θ̄kŨ +

t∑
k=0

θ̄kṼ

where ω̄t =
∑

N πt(k)ωit(k), λ̄t =
∑

N πt(k)λit(k), and θ̄t =
∑

N πt(k)θit(k).
Imposing market clearing, we have

t∑
k=0

X̃k −
t∑

k=0
θ̄kŨ −

t∑
k=0

θ̄kṼ = ω̄tP̃t +
t∑

k=0
λ̄kQ̃k.

Substituting

P̃t = βtQ̃t +
t−1∑
j=0

ξj,tQ̃j

into the above equation, we obtain

t∑
k=0

X̃k −
t∑

k=0
θ̄kŨ −

t∑
k=0

θ̄kṼ = ω̄t(βtQ̃t +
t−1∑
j=0

ξj,tQ̃j) +
t∑

k=0
λ̄kQ̃k.

Furthermore, notice that
X̃k = βk

γk

(
Ũ + αk

βk
Ṽ − Q̃k

)
.

Substituting and regrouping, we obtain

X̃t +
t−1∑
k=0

βk
γk

(
Ũ + αk

βk
Ṽ − Q̃k

)
−

t∑
k=0

θ̄kŨ −
t∑

k=0
θ̄kṼ = (ω̄tβt + λ̄t)Q̃t +

t−1∑
j=0

(ξj,tω̄t + λ̄jQ̃j),
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or, equivalently,

X̃t +
(
t−1∑
k=0

βk
γk
− θ̄k

)
Ũ +

(
t−1∑
k=0

βk
γk

αk
βk
−

t∑
k=0

θ̄k

)
Ṽ −

t−1∑
k=0

βk
γk
Q̃k ≡ f({Q̃j}tj=0).

The right-hand side of this equation is only a function of {Q̃j}tj=0. By separation of variables, the
left-hand side must also be a function of {Q̃j}tj=0 only. Hence, it must be that

−
(
t−1∑
k=0

βk
γk
− θ̄k

)Ũ +
∑t−1
k=0

βk
γk

αk
βk
−
∑t
k=0 θ̄k∑t−1

k=0
βk
γk
− θ̄1

k

Ṽ − 1∑t−1
k=0

βk
γk
− θ̄k

X̃t

 ≡ Q̃t.
This equality holds if and only if ∑t−1

k=0
βk
γk

αk
βk
−
∑t
k=0 θ̄k∑t−1

k=0
βk
γk
− θ̄k

= αt
βt

and
1∑t−1

k=0
βk
γk
− θ̄k

= γt
βt
.

Without loss of generality, we set
γt
βt

= 1
rSΩt

so that
t∑

k=0
(θ̄k) =

t∑
k=0

βk
γk

= rS
t∑

k=0
Ωk.

and
αt
βt

= ηΛt
rSΩt

so that:

η
t∑

k=0
θ̄k =

t∑
k=0

βk
γk

αk
βk

=
t∑

k=0
Λk.

The system of equations in (17) follows. This system of equations is a fixed point: to solve it, we
solve the problem recursively (as in Appendix A.2, except accounting for the rumor) over 4 periods.
We then start with guess values for {Ωj}3j=0 and {Λj}3j=0 and get, through the fixed point in (17),
new values for these coefficients. Iterating and invoking the Contraction-Mapping Theorem, we
obtain the equilibrium coefficients. �
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